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The Logic of Computer Programming

ZOHAR MANNA AND RICHARD WALDINGER

Abstmct-Techniques derived from mathematical logic promise to
provide an alternative to the conventional methodology for construct-
ing, debugging, and optimizing computer programs. Ultimately, these
techniques are intended to lead to the automation of many of the
facets of the programming process.
This paper provides a unified tutorial exposition of the logical tech-
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niques, ilustrating each with examples. The strengths and limitations
of each technique as a practical programming aid are assessed and at-
tempts to implement these methods in experimental systems are
discussed.

Index Tenns-Correctness of programs, derivation of programs, pro-
gram extension, program modification, program synthesis, program
transformation, program verification, structured programming, system-
atic program development, termination of programs.

"It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful
in the next century as that between analysis and physics
in the last. The development of this relationship de-
mands a concern for both applications and for mathe-
matical elegance."

John McCarthy [63]
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I. INTRODUCTION
IN JUNE 1962, the first American space probe to Venus

(Mariner I) went off course and had to be destroyed because
of an error in one of the guidance programs in its onboard
computer. One statement of the program, though syntactically
correct, had a meaning altogether different from that intended
by the programmer. Although few bugs have such spectacular
effects, errors in computer programs are frequent and influen-
tial. There has been substantial effort recently to apply
mathematical rigor to the programming process and to enable
the accuracy of the machine to compensate for the error-prone

human mind.
In the late nineteenth and early twentieth century, mathe-

matics underwent a process of formalization and axiomatiza-
tion, partially in an effort to escape from paradoxes and logical
errors encountered by previous generations of mathematicians.
A similar process is underway in the development of a logical
theory of programs. This theory has already made our under-
standing of programs more precise and may soon facilitate our

construction of computer programs as well. Logical techniques
are being developed to prove programs correct, to detect pro-
gramming errors, to improve the efficiency of program opera-
tion, to extend or modify existing programs, and even to con-

struct new programs satisfying a given specification; many of
these techniques have been implemented in experimental pro-

gramming systems. In the last decade, this field of research
has been extremely active; it now has the potential to exert a

deep influence on the way computer programs are produced.
The available techniques are already described in the litera-

ture, but the relevant papers are scattered through many tech-
nical joumals and reports, are written in a variety of incom-
patible notations, and are often unreadable without some

background in mathematical logic. In this paper, we attempt
to present the principal methods within a unified framework,
conveying the intuition behind the methods by examples, and
avoiding the formal apparatus of the logicians.
To facilitate a comparison between the various techniques,

we use a number of different algorithms for performing the
same task: to compute the greatest common divisor of two
integers. These algorithms are simple enough to be readily
understood, but subtle enough to demonstrate typical
difficulties.
The greatest common divisor of two nonnegative integers x

and y, abbreviated as gcd(x y), is the largest integer that divides
both x and y. For instance: gcd(9 12) = 3, gcd(12 25) = 1,
and gcd(O 14) = 14. When x and y are both zero there is no
greatest common divisor, because every integer divides zero;

on the other hand, when x ory is not zero, a greatest common
divisor must exist.
A naive algorithm to compute the gcd of x and y might

behave as follows: make lists of all the divisors ofx and of all
the divisors of y; then make a third list of all the numbers that
appear in both lists (these are the common divisors ofx and y);
finally, find the largest number in the third list (this is the
greatest common divisor of x and y). The cases in which x or

y is zero must be handled separately. This algorithm is straight-
forward but inefficient because it requires an expensive opera-
tion, computing all the divisors of a given number, and because

it must remember three lists of intermediate numbers to com-
pute a single number.
A more subtle but more efficient algorithm to compute the

gcd of two numbers can be devised. Until the first number is
zero, repeat the following process: if the second number is
greater than or equal to the first, replace it by their differ-
ence-otherwise interchange the two numbers-and continue.
When the first number becomes zero, the answer is the second
number. This answer tums out to be the gcd of the two origi-
nal numbers. The new algorithm is more efficient than the
naive one, because it only needs to remember two numbers at
any one time and to perforn the simple minus operation.
The above algorithm can be expressed as a stylized program:

Program A (the subtractive algorithm):
input(xo Yo)
(x y) v (xo Yo)

more: if x = 0 then goto enough
ify >x theny +-y - x else (xy) v (y x)
goto more

enough: output(y).

The notation (x y) v- (xo yo) means that the values of x and
y are simultaneously set to the input values xo andyo, respec-
tively. Thus, the statement (x y) <- (y x) has the effect of
interchanging the values of x and y. This program causes the
following sequence of values of x and y to be generated in
computing the gcd of the input values xo = 6 and yo = 3:

x=6 and y=3,
x=3 and y=6,
x=3 and y=3,
x=3 and y=0,
x=0 and y=3.

Thus, the output of the program is 3.
Although the earlier naive algorithm was obviously correct,

because it closely followed the definition of ged, it is by no
means evident that Program A computes the gcd function.
First of all, it is not clear that when x becomes zero, the value
of y will be the gcd of the inputs; that this is so depends on
properties of the ged function. Furthermore, it is not obvious
that x will ever become zero; we might repeatedly execute the
if-then-else statement forever.
For instance, consider the program A' obtained from A by

replacing the conditional

ify >x then y -y - x else (x y) - (y x)

by

if >xtheny-<y -xelsex*-x-y.

This program closely resembles Program A, and it actually
does compute the gcd of its inputs when it happens to produce
an output. However, it will run forever and never produce an
output for many possible input values; for instance, ifxo0 0
and yo = 0, or ifxO 0 and yo = xo. Thus, ifxo = yo = 3, the
following sequence of successive values ofx andy emerges:

x=3 and y=3,
x=3 and y=O,
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x=3 and y=0,
x = 3 and y = 0,....

These programs are as simple as any we are likely to encoun-
ter, and yet their correctness is not immediately clear. It is
not surprising, therefore, that bugs occur in large software sys-
tems. Although programs may be subjected to extensive test-
ing, subtle bugs frequently survive the testing process. An
altemative approach is to prove mathematically that bugs
cannot possibly occur in the program. Although more difficult
to apply than testing, such mathematical proofs attempt to
impart absolute certainty that the program is, indeed, correct.
We will argue that these methods will always fall short of

this goal: we can never be absolutely certain that a program is
correct and mathematical proofs are unlikely to supersede the
testing process entirely. But these methods can be effective in
helping us to detect bugs in programs and to impart greater
confidence in their correctness.
Techniques derived from mathematical logic have been ap-

plied to many aspects of the programming process, including
the following.

1) Correctness: Proving that a given program produces the
intended results.

2) Termination: Proving that a given program will even-
tually stop.
3) Transformation: Changing a given program into an

equivalent one, often to improve its efficiency (optimization).
4) Development: Constructing a program to meet a given

specification.
These techniques are intended to be applied by the program-

mer, usually with some degree of computer assistance. Some
of the techniques are fairly well understood and are already
being incorporated into experimental programming systems.
Others are just beginning to be formulated and are unlikely to
be of practical value for some time.

Our exposition is divided between a basic text, given in
an ordinary type font, and secondary notes, like this
one, interspersed throughout the text in a smaller font.
The basic text presents the principal logical techniques
as they would be applied by hand; the secondary notes
discuss subsidiary topics, report on implementation ef-
forts, and include bibliographical remarks. Only a few
references are given for each topic, even though we are
likely to lose some good friends in this way. The hasty
reader may skip all the secondary notes without loss of
continuity.

In the following pages, we will touch on each of these topics;
we begin with correctness, the most investigated and best
understood of them all.

II. PARTIAL CORRECTNESS

To determine whether a program is correct, we must have
some way of specifying what it is intended to do; we cannot
speak of the correctness of a program in isolation, but only of
its correctness with respect to some specifications. After all,
even an incorrect program performs some computation cor-
rectly, but not the same computation that the programmer
had in mind.

For instance, for the ged program we can specify that when
the program halts, the variable y is intended to equal the great-
est integer that divides both inputs xo and yo; in symbolic
notation

y = max{u : ulxo and ulyo}.
(Here, the expression {u : p(u)} stands for the set of all ele-
ments u such that p(u) holds, and the expression ulv stands for
"u divides v," i.e., v = k - u for some integer k.) We call such
a statement an output assertion, because it is expected to be
true only when the program halts. Output assertions are gen-
erally not sufficient to state the purpose of a program; for ex-
ample, in the case of the gcd, we do not expect the program to
work for any xo and yo, but only for a restricted class. We
express the class of "legal inputs" of a program by an input
assertion. For the subtractive gcd algorithm (Program A), the
input assertion is

xo >Oandyo >Oand(xo0Ooryo0 0).

We require that at least one of the inputs be nonzero, because
otherwise the gcd does not exist. We do not state explicitly
that the inputs are integers, but we will assume throughout
this paper that variables always assume integer values.
We have expressed the specifications for Program A as a pair

of input-output assertions. Our task now is to show that if
we execute Program A on any input satisfying the input asser-
tion, the program will halt with output satisfying the output
assertion. If so, we say that Program A is totally correct. It is
sometimes convenient, however, to split the task of proving
total correctness of a program into two separate subtasks:
showing partial correctness, that the output assertion is satis-
fied for any legal input if the program halts; and showing ter-
mination, that the program does indeed halt for all legal inputs.
It will be convenient for us to ignore the problem of termina-
tion for a while and deal only with partial correctness.
The language in which we write the assertions is different

from the programming language itself. Because the statements
of this assertion language are never executed, it may contain
much higher level constructs than the programming language.
For instance, we have found the set constructor {u : ... .} use-
ful in describing the purpose of Program A, even though this
notation is not a construct of conventional programming lan-
guages. Written in such a high-level language, the assertions are
far more concise and naturally expressed than the program
itself.

In proving partial correctness, it helps to know more about
the program than just the input-output assertions. After all,
these assertions only tell us what the program is expected to
achieve and give us no information on how it is to reach these
goals. For instance, in understanding Program A, it is helpful
to know that whenever control passes through the label more,
the greatest common divisor of x and y is intended to be the
same as the greatest common divisor of the inputs xo andyo,
even though x and y themselves may have changed. Because
this relationship is not stated explicitly in either the input-
output assertions or the program itself, we include it in the
program as an intermediate assertion, expressed in the assertion
language:
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max{u : ulx and uly} = max{u: ulxo and ulyo}.
Another intermediate assertion states that whenever we pass
through more, the program variables, x and y, obey the same
restrictions as the input values xo and yo, i.e.,

x >0 and y >0 and (x #0 or y 0).

We rewrite Program A below, annotated with its assertions
(within braces, "{... }"). Note that the assertions are not
intended to be executed, but are merely comments expressing
relationships that we expect to hold whenever control passes
through the corresponding points.

Program A (annotated):
input(xo Yo)
{xo >O andyo >O and (xo #O oryo0 0)}
(x y) v (xo yo)

more: {x >0 andy >O and (x ory 0)
and max {u : ulx and ulyl =

max{ulxo and ujyo}}
if x = 0 then goto enough
ify >x theny o-y - x else (xy) +- (y x)
goto more

enough: {y = max{u: ulxo and ulyo} }
output(y).

Our goal is to prove that if the program is executed with input
satisfying the input assertion, and if the program halts, then
the output assertion will hold when the program reaches
enough.
For this purpose, we will show that the intermediate asser-

tion is true whenever control passes through more; in other
words, it is invariant at more. The proof is by mathematical
induction on the number of times we reach more. That is, we
will start by showing that if the input assertion is true when
we begin execution, the intermediate assertion will be true the
first time we reach more; we will then show that if the inter-
mediate assertion holds when we pass through more, then it
will be true again if we travel around the loop and return to
more; therefore, it must be true every time we pass through
more.

Finally, we will show that if the intermediate assertion holds
at more, and if control happens to pass to enough, then the
output assertion will be true. This will establish the partial
correctness of the program with respect to the given input and
output assertions.
Let us first assume that the input assertion is true when we

begin execution, and show that the intermediate assertion
holds the first time we reach more. In other words, if

xo >Oandyo >Oand(xo #Ooryo #0),

and we execute the assignment

(xy) +-(xo Yo),
then

x >0 andy>0 and (x #0 ory 0)
and max{u : ulx and uly} = max{u: ujxo and ulyol,

for the new values ofx andy.

Because the assignment statement sets x to xo and y toyo,
we are led to prove the verification condition

1) xo >OandyO>Oand(x0# oryo #0)
xo>O and yo >O and (xo = O or yo0 0)
and max{u : uIxo and uIyo} =
max{u: ulxo and ulyo}.

(Here the notation A => B means that the antecedent A
implies the consequent B.) The consequent was formed from
the intermediate assertion by replacing x by xo andy byyo.
Next, assuming that the intermediate assertion is true at

more and control passes around the loop, we need to show
that the assertion will still be true for the new values ofx and
y when we return to more. In other words, if the intermediate
assertion

x >0 andy >0 and (x 00ory #0)
and max{u : ulx and uly} = max{u: ulxo and ulyo}

holds, if the exit text x = 0 is false (i.e., x # 0), and if the con-
ditional statement

ify > x theny -y - x else (x y) - (y x)

is executed, then the intermediate assertion will again be true.
To establish this, we distinguish between two cases. Ify > x,
the assignment statement y <-y - x is executed, and we
therefore must prove the verification condition

2) x>Oandy>Oand(x*Oory#O)
and max{u : ulx and uly} = max{u : ulxo and ulyo}
and x #0
and y >x
= x >0 andy - x >0 and (x #0 ory - x #0)

and max{u : ulx and uly - x} =
max{u : ulxo and ulyO}.

The antecedent is composed of the intermediate assertion and
the tests for traversing this path around the loop. The conse-
quent was formed from the intermediate assertion by replacing
y byy - x.

In the alternate case, in which y <x, the consequent is
formed by interchanging the values of x and y. The corre-
sponding verification condition is

3) x>Oandy>Oand(x#Oory0O)
andmax{u:ulxanduly}=max{u:ulxoandulyo}
and x 0O
andy <x
y>Oandx>Oand(y=Oorx#O)
and max{u : uly and ulx} =

max{u : ulxo and uIyO}.
To complete the proof we must also show that if the inter-

mediate assertion holds at more and control passes to enough,
then the output assertion will hold. For this path, we need to
establish the verification condition

4) x>Oandy>Oand(x#Oory#O)
and max{u : ulx and uly} = max{u : ujlx and ulyO}
and x = 0
===> y = max{u : uIxo and ulyo}.
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These verification conditions are lengthy formulas, but it is
not difficult to prove that they are all true. Conditions 1) and
3) are logical identities, which can be proved without any
knowledge of the integers. The proofs of Conditions 2) and 4)
depend on three properties of the integers:

a) ulx and uly lulx and uly - x

(the common divisors of x and y - x are the same as
those ofx and y),

b) u 10

(any integer divides zero), and

c) max{u:uly}\=y ify>0

(any positive integer is its own greatest divisor).

To prove Property a), assume ulx and uly. Then we
must show that uly - x as well. We know that x = k * u
and y = I uu, for some integers k and 1. But then y - x =
(1 - k)- u, and hence uly - x, as we wanted to show.
Similarly, if ulx and uly - x, then x = m * u andy - x =
n - u for some integers m and n. But then y = x +
(y - x) = (m + n) * u, and hence uly.

To prove Condition 2), let us consider the consequents one
by one. That x>0, y-x>0, and (x+0 ory-x#0) are
true follows directly from the antecedents x > 0, y > x, and
x # 0, respectively. That

max{u : ulx and uly - x} = max{u : ulxo and ulyo}
follows from the antecedent

max{u: ulx and uly}= max{u: uIxo and ulyo}
and Property a).
To prove Condition 4), first observe that the antecedents

imply

y >0,

because x = 0 and (x #0 ory #0) implyy # 0, but y #0 and
y > 0 imply y > 0. Now, since x = 0, applying Property b) to

max{u : ulx and uly} = max{u: ulxo and ulyo}
yields

max{u : uly} = max{u : ulxo and ulyo}.
Because y > 0, applying Property c) yields

y = max{u : ulxo and ulyo},
the consequent of Condition 4).
This concludes the proof of the partial correctness of Pro-

gram A. Note again that we have not proved the termination
of the program: we have proved merely that if it does termi-
nate then the output assertion is satisfied. A similar proof can
be applied to Program A' (the program formed from Pro-
gram A by replacing the statement (x y) v- (y x) by
x 4- x -y), even though that program may loop indefinitely
for some legal inputs. Program A' is partially correct, though
not totally correct, because it does compute the ged of those
inputs for which it happens to halt.
The proof of the partial correctness of Program A involved

reasoning about four loop-free program paths: one path from
the input assertion to the intermediate assertion, two paths
from the intermediate assertion around the loop and back to
the intermediate assertion, and one path from the intermediate
assertion to the output assertion. Had we not introduced the
intermediate assertion, we would have had to reason about an
infinite number of possible program paths between the input
assertion and the output assertion corresponding to the indef-
inite number of times the loop might be executed. Thus, the
intermediate assertion is essential for this proof method to
succeed.
Although a program's assertions may become true or false

depending on the location of control in the program, the veri-
fication conditions are mathematical statements whose truth
is independent of the execution of the program. Given the
appropriate assertions, if the program is partially correct, then
all the verification conditions will be true; inversely, if the pro-
gram is not partially correct, at least one of the verification
conditions will be false. We have thus transformed the problem
of proving the partial correctness of programs to the problem
of proving the truth of several mathematical theorems.
The verification of a program with respect to given input-

output assertions consists of three phases: finding appropriate
intermediate assertions, generating the corresponding verifica-
tion conditions, and proving that the verification conditions
are true. Although generating the verification conditions is
a simple mechanical task, finding the intermediate assertions
requires a deep understanding of the principles behind the
programs, and proving the verification conditions may demand
ingenuity and mathematical facility. Also, a knowledge of the
subject domain of the program (e.g., the properties of integers
or the laws of physics) is required both for finding the inter-
mediate assertions and proving the verification conditions.
One way to apply the above technique is to generate and

prove verification conditions by hand. However, in perform-
ing such a process we are subject to the same kinds of errors
that programmers commit when they construct a program in
the first place. An alternate possibility is to generate and
prove the verification conditions automatically, by means of a
verification system. Typically, such a system consists of a
verification condition generator, which produces the verifica-
tion conditions, and a theorem prover, which attempts to
prove them.

Invariant assertions were introduced by Floyd [32] to
prove partial correctness of programs, although some
traces of the idea appear earlier in the literature. King
[48] implemented the first system that used invariant
assertions to prove the partial correctness of programs.
Given a program, its input-output assertions, and a set
of proposed intermediate assertions, King's system gen-
erated the verification conditions and attempted to
prove them. Some later systems (such as those of
Deutsch [26], Elspas et al. [31], Good et al. [37],
Igarashi et al. [46], and Suzuki [79] ) adopted the same
basic approach but employed more powerful theorem
provers to prove the verification conditions. Therefore,
they were able to prove the partial correctness of a wider
class of programs.
Although the above systems have advanced somewhat
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beyond King's original effort, they have two principal
shortcomings. They require that the user supply an ap-
propriate set of intermediate assertions, and their theo-
rem provers are not powerful enough to prove the verifi-
cation conditions for most of the programs that arise in
practice. Let us consider each of these difficulties
separately.
Finding Invariant Assertions: Although the invariant

assertions required to perform the verification are guar-
anteed to exist, to find them one must understand the
program thoroughly. Furthermore, even if we can dis-
cover the program's principal invariants (e.g., max{u:
ulx and uly} = max{u : ulxo and ulyo} above) we are
likely to omit some subsidiary invariants (e.g., y > 0
above) that are still necessary to complete the proof. Of
course, it would be ideal for the programmer to supply
only the program and its input-output assertions and to
rely on the verification system to construct all the re-
quired intermediate assertions automatically. Much re-
search in this direction has already been done (see, for
example, German and Wegbreit [36] and Katz and
Manna [47]). However, it is more difficult for a com-
puter system to find the appropriate assertions than for
the programmer to provide them, because the principles
behind a program may not be readily revealed by the
program's instructions. A less ambitious goal is to re-
quire the programmer to supply the principal invariants
and expect the system to fill in the remaining subsidiary
assertions.
Proving Verification Conditions: Verification condi-

tions may be complex formulas, but they are rarely
subtle mathematical theorems. Current verification sys-
tems can be quite effective if they are given strategies
specifically tailored to the subject domain of the pro-
gram. However, the programs we use in everyday life
rely on a large and varied body of subject knowledge,
and it is unusual that a system can verify a program in a
new subject domain without needing to be extended or
adapted in some way (cf. Waldinger and Levitt [ 83] ). Of
course, some of this difficulty may be remedied by
future theorem-proving research and by the development
of interactive verification systems.

The invariant assertions that we attach to intermediate
points to prove partial correctness relate the values of the pro-
gram variables at the intermediate points to their initial values.
For instance, in Program A we asserted that

x >0 andy >0 and (x 00ory #0)
and max{u: ulx and uly} = max{u: ulxo and ulyo}

at the label more. A more recent method, the subgoal-assertion
method, employs subgoal assertions that relate the interme-
diate values of the program variables with their ultimate values
when the program halts. For Program A the subgoal assertion
at more would be

x >0 andy >0 and (x #0 ory 0)
==> yf = max{u: ux and uly},

where yf denotes the final value of y at termination. This

with acceptable values for x and y, the gcd of the current
values ofx andy will be the ultimate value ofy.
We prove this relationship by induction on the number of

times we have yet to traverse the loop before the program ter-
minates. Whereas the induction for the invariant-assertion
method follows the direction of the computation, the induc-
tion for the subgoal-assertion method proceeds in the opposite
direction. Thus, we first show that the subgoal assertion holds
the last time control passes through more, when we are about
to leave the loop. We then show that if the subgoal assertion
holds at more after traversing the loop, then it also holds
before traversing the loop. This implies that the subgoal asser-

tion holds every time control passes through more. Finally,
we show that if the subgoal assertion is true the first time con-

trol passes through more, the desired output assertion holds.
To apply this method to prove the partial correctness of

Program A, we need to prove the following verification
conditions:

1) x=O
=> [x>Oandy>Oand(x#Oory=0)

= y = max{u: ulx and uly}]

(the subgoal assertion holds when we are about to
leave the loop).

2) [x>Oandy-x>Oand(x#Oory-x#O)
==> yf = max{ulx and uly - x}]

and x #0

andy > x

=> [x>Oandy>Oand(x#Oory0O)
yf = max{u ulx and uly}]

(the subgoal assertion after traversing the then path
of the loop implies the subgoal assertion before
traversing the path).

3) [y>Oandx>Oand(y#Oorx#O)
==> yf = max{u : uly and ulx}]

andx O

andy <x
= x[x>0andy>0and(x=Oory#O)

=- yf = max{u: ulx and uly}]

(the subgoal assertion after traversing the else path
of the loop implies the subgoal assertion before
traversing the path).

4) xo >0 and yo >O and (xo *0 ory00 °)
and [xo >Oandyo >Oand(xo #Ooryo /0)

=> yf = max{ulxo and uIyO}]
yf = max{u: ulxo and ulyo}

(the input assertion and the subgoal assertion the
first time we enter the loop imply the output
assertion).

Each of these conditions can be easily proved. Conditions
(1)-(3) establish that our intermediate assertion is indeed a

subgoal assertion. Thus, whenever control reaches more the
assertion expresses that whenever control passes through more
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x and y and the ultimate value yf of y. Condition (4) then
ensures that the truth of the subgoal assertion the first time
we reach more is enough to establish the desired output asser-
tion. Together, these conditions prove the partial correctness
of Program A.
From a theoretical point of view, the invariant-assertion

method and the subgoal-assertion method are equivalent in
power, in that a proof of partial correctness by either of the
methods can immediately be rephrased as an equivalent proof
by the other method. In practice, however, for a given pro-
gram the subgoal assertion may be simpler than the invariant
assertion, or vice versa. It is also quite possible to apply both
methods together in verifying a single program. Thus, the
two methods may be regarded as complementary.

The subgoal-assertion method was suggested by Manna
[57] and developed by Morris and Wegbreit [65] .

In demonstrating the partial correctness of Program A, we
employed rigorous but informal mathematical arguments. It is
possible to formalize these arguments in a deductive system,
much in the same way that logicians formalize ordinary mathe-
matical reasoning. To introduce an invariant deductive system
for the invariant-assertion approach, we use the notation

{P} F {Q},
where P and Q are logical statements and F is a program seg-
ment (a sequence of program instructions), to mean that if P
holds before executing F, and if the execution terminates,
then Q will hold afterwards. We call an expression of this
form an invariant statement. For instance,

{x <y} (xy) *- (y x) {y <x}

is a true invariant statement, because if the value of x is less
than the value ofy before interchanging those values, the value
ofy will be less than the value ofx afterwards.
Using this notation, we can express the partial correctness of

a program with respect to its input and output assertions by
the invariant statement

{input assertion} program {output assertion}.

This statement means that if the input assertion holds, and if
the program terminates, then the output assertion will hold;
therefore, it adequately states the partial correctness of our
program.
To prove such invariant statements we have a number of

rules of inference, which state that to infer a given invariant
statement it suffices to prove several subgoals. These rules are
usually presented in the form

Al,A2, An
B

meaning that to infer the consequent B, it suffices to prove the
antecedents A12, * An. Here B is an invariant state-
ment, and each of Al, A2, * * *, A,n is either a logical state-
ment or another invariant statement. We have one rule corre-

Assignment Rule: Corresponding to the assignment
statement

(Xi1 X2 ... Xn) v (tlI t,2 ***tn),

which assigns the value of each termfn ti to its respective variable
xi simultaneously, is

P(x1 X2 X.) Q(tI t2 * *tn)

{P(x1 X2 Xn)}
(XI X-2 ' * * Xn) v (ti t2 ***tn)
{Q(X1 X2 * * * Xn)}

where P(xI x2 xn) and Q(xI x2 ... xn) are arbitrary logi-
cal statements, and Q(t1 t2 * * * tn) is the result of simultane-
ously substituting ti for xi wherever it appears in Q(x1 x2

xn). In other words, to infer the invariant statement

{P(x1 X2 * * Xn)}
(X I X2 * * Xn) v- (tl t2 ***tn )
{Q(x1 x2 * * *X.O,

it suffices to prove the logical statement

P(xI X2 * **Xn) ==> Q(tI t2 ** tn)
For example, to prove the invariant statement

{x<y} (xy) (yx) {y Sx}

it is enough to prove x <y === x <y.
This rule is valid because each xi has been assigned the value

ti by the assignment statement. Thus, Q(x1 x2 xn) will

hold after the assignment if Q(tI t2 * * * tn) held before.
Because we are assuming P(x1 x2 - xn) held before the
assignment, it is enough to show P(xj x2 Xn)=)
Q(t1 t2 ... tn)-
Conditional Rule: The rule for the statement "if R then F1

else F2" is

{P and R} F1 {Q}, {P and 'R} F2 {Q}
{P} if R then F1 else F2 {Q}

That is, to establish the consequent it suffices to prove the two
antecedents {P and R} F1 {Q}, corresponding to the case that
R is true, and {P and -R} F2 {Q}, corresponding to the case

that R is false.
To treat loops in this notation it is convenient to use the

while statement instead of the goto. The statement

while R do F

means that the program segment F is to be executed repeatedly
as long as the logical statement R is true. In other words, this
statement is equivalent to the program segment

more: if not R then goto enough
F
goto more

enough:

The more concise structure of the while statement simplifies
sponding to each statement in our language.
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While Rule: Corresponding to the while statement we have
the rule

P I, {IandR}F{I}, I and -R=>Q
{P} while R do F {Q}

for any I. Here, I plays the same role as the invariant asser-
tion in our informal proof; the condition "P =- I" states that
the invariant I is true when we enter the loop; the condition
"{I and R} F {I}" conveys that if I is true before executing
the loop body F, and if the execution of F terminates, I will
be true afterwards; then the condition "I and -iR ==> Q" en-
sures that if control ever exits from the loop, then Q will be
true.
To apply the while rule to infer the desired consequent,

we need to find a logical statement I satisfying the three
antecedents.
Concatenation Rule: This rule enables us to make inferences

about the concatenation F1 F2 of two program segments, F1
and F2:

{P} F1 {R}, {R} F2 {Q}
{P} F1 F2 {Q}

for any R. The consequent follows from the antecedents. For
suppose that P holds before executing F1 F2, and that the exe-
cution terminates. Then R holds after executing F1 (by the
first antecedent), and therefore Q holds after executing F2 (by
the second antecedent).
These are all the rules in our deductive system. Additional

rules are necessary if we wish to add new statements to our
programming language.
To prove an invariant statement {P} F {Q}, we apply the

appropriate inference rule, of the form

Al, A2, *. * An
{P} F {Q}

If Ai is an invariant statement, then it is of form {P'} F' {Q'},
where F' is a subsegment of F. In this case, we repeat the pro-
cess for this antecedent. On the other hand, if Ai is a logical
statement, we prove it directly without using any of the rules
of the invariant deductive system. Eventually, all the subgoals
are reduced to logical statements, which are proved to be true.
Recall that to establish the partial correctness of a program

with respect to given input-output assertions, we prove the
invariant statement

{input assertion} program {output assertion}.
In this case, the logical statements produced in applying the
above procedures are the program's verification conditions.
To showhow this formalism applies to the partial correctness

of the subtractive gcd algorithm (Program A), we rewrite this
program using a while statement instead of a goto:

Program A (with while statement):
input(xo Yo)
{xo>0andyo>0and(xo0 ory =O0)}
(xy) 4 (xO Yo)
while x *O do

{invariant(x y)}

ify >x theny f-y - x else (xy) v (y x)
{y = max{u: ulxo and ulyo}}
output(y),

where invariant(x y) is taken to be the same invariant we used
in our informal invariant-assertion proof, i.e.,

x >0 andy>0 and (x = 0 ory A 0)
and max{u : ulx and ulyl = max{u : ulxo and ulyo}.

This program has the form

input(xo Yo)
{xo >Oandy0 >Oand(xo =Ooryo0+)}
Body A
{y = max{u : ulxo and uIyo} }
output(y),

and the invariant statement to be proved is

Goall. {xo,> Oandyo,> Oand(x0#Ooryo*O)}
Body A
{y = max{u: ulxo and ulyo}}.

Note that Body A is a concatenation of an assignment state-
ment and a while statement; thus, the concatenation rule tells
us that to establish Goal 1, it suffices to prove

Goal2. {xo>Oandyo>Oand(xo#Ooryo#O)}
(x y) v- (xo YO)
{R(x y)}

and

Goal 3. {R(x y)}
while x 0O do ...
{y = max{u::ujxo and ulyo} }

for some assertion R(x y). Here, R(x y) can be taken to be
invariant(xy) itself. (If we make an inappropriate choice for
R(x y), we may be unable to complete the proof.)
To infer Goal 2, it suffices by the assignment rule to prove

the logical statement

Goal4. xo0> OandyO0> Oand(x0#Ooryo #-0)
=, invariant(xo YO),

which is easily established, because invariant(xo yo) is simply

xo >Oandyo >Oand(xo #Ooryo #0)
and max{u : ulxo and ulyo} = max{u : ulxo and ulyo}.

The while rule reduces Goal 3 to the trivial logical statement

invariant(xy) ==> invariant(xy),
and the two new subgoals

Goal 5. {invariant(x y) and x # 0}
ify>x then . .. else. . .
{invariant(x y)}

and

Goal 6. invariant (x y) and x = 0
=> y = max{u : ulxo and ulyo}.

The if-then-else rule reduces Goal 5 to
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Goal 7. {invariant(xy) and x O andy >x}
y+-Y -x
{invariant(x y)}

and

Goal 8. {invariant(x y) and x 0O and y < xl
(xy) -(yx)
{invariant(x y)}.

Applying the assignment rule to each of these goals yields

Goa 9. invariant(xy) andx 0 andy >x
invariant(x y - x)

and

Goal 10. invariant(xy)andx#Oandy<x
invariant(x y - x)

Now the remaining Goals 6, 9, and 10, like Goal 4, are all
logical statements; these are the four verification conditions
of Program A. Each of these statements can be shown to be
true, and the partial correctness of Program A is thus
established.
The above deduction can be summarized in the following

"deduction tree":

The above invariant deductive system is essentially the
same as the one introduced by Hoare [42].
Whenever a new deductive system is developed, it is

natural to ask whether it possesses certain desirable logi-
cal properties. The deductive system we have presented
has been proved (Cook [18] ) to have the following
properties.
Soundness: If the verification conditions of a program

are true, the program is indeed partially correct.
Completeness: If the program is partially correct, it

has true verification conditions.
We have presented the inference rules for only a very

simple programming language. Such rules have also been
formulated for goto's, procedures, and other common

programming features (e.g., see Clint and Hoare [17]
and Ashcroft et al. [3] ). However, when more complex
features are introduced, finding sound and complete
rules to describe them becomes a serious challenge. It
has actually been proven impossible to formulate com-

plete rules of inference for certain programming con-
structs (Clarke [ 16] ).
Part of the difficulty in formulating rules of inference

for certain constructs arises because, traditionally, pro-
gramming languages have been designed without consid-
ering how programs using their constructs are to be veri-
fied. It has been argued that programming languages
designed to allow easier verification will also facilitate
the construction of more comprehensible programs.
Some recent programming languages designed with such
considerations in mind are LUCID (Ashcroft and Wadge
[4]), EUCLID (Lampson et al. [53]), CLU (Liskov
[54]), and ALPHARD (Wulf et al. [87]).

Our treatment of partial correctness has been rather ideal-
ized: our programming language includes only the simplest of
features, and the program we considered was quite straight-
forward. We have not discussed the more complex problems
that occur in verifying the kinds of programs that actually
arise in practice.

Let us briefly mention a few of the trouble spots in
proving the correctness of practical programs.
Computer Arithmetic: We have assumed that the

arithmetic operations performed by the computer corre-
spond precisely with the ideal operations of the mathe-
matician; in fact, the computer is limited in the precision
to which a real number can be represented. Conse-
quently, our notion of correctness should be modified to
take into account that a computer program only com-
putes an approximation of the mathematical function it
is intended to compute (see, e.g., Hull et al. [45]).

Cleanness: A computer program may be incorrect not
only because it fails to satisfy its output specification,
but also because of mishaps that occur during the cQm-
putation: it may generate a number larger or smaller
than the computer system can store (overflow or under-
flow), for instance, or it may attempt to divide a number
by zero or to find the square root of a negative number.
It is possible to prove that a program is clean (i.e., that
no such accident can occur) by establishing an appro-
priate invariant before each program statement that
might cause offense (Sites [ 74] ). For example, before a
statement z o- x/y we can introduce the assertions that
y 0 and that e<xl/yI<E, where e and E are the
smallest and largest positive real numbers, respectively,
that the computer system can store.
Side Effects: Many programming constructs have

indirect side effects: their execution can alter the
properties of entities not explicitly mentioned by the
instructions themselves. For instance, suppose our pro-
gramming language allows assignment to the elements of
an array. Then the instruction A[i] - t, which assigns
t to the ith element of an array A, can alter the value of
A[j] if it happens that i=j, even though A[j] itself is
not explicitly mentioned in the instruction. To prove
the correctness of programs employing such constructs
requires an alteration of the principles outlined here.
For example, one consequence of the assignment rule is
the invariant statement

{P}x e-t {P},

where the variable x does not occur in P. If array assign-
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ments are admitted, however, one instance of this state-
ment is

{A[ji] = 5} A[i] <-4 {A[jI = 5}.
This statement is false if i can equal j. (For a discussion
of such problems, see Oppen and Cook [661.)
Intermediate Behavior of Programs: We have formu-

lated the correctness of a program by providing an out-
put assertion that is intended to be satisfied when the
program terminates. However, there are many programs
that are not expected to terminate, such as airline reser-
vation systems, operating systems, and conversational
language processors. The correctness of these programs
cannot be characterized by an output assertion (e.g., see
Francez and Pnueli [331 ). Moreover, certain properties
of such programs are more naturally expressed as a rela-
tion between events that occur while the program is run-
ning. For instance, in specifying an operating system,
we might want to state that if a job is submitted it will
ultimately be executed. Even if the operating system
does terminate, this property cannot be expressed con-
veniently as an output assertion. Similarly, in specifying
the security property of a data base system, to ensure
that a user cannot access or alter any file without the
proper authorization, we are concerned with the inter-
mediate behavior of the system during execution, and
not with any final outcome.
Indeterminacy: Some programming languages have

introduced control features that allow the system to
choose arbitrarily between several alternate sources of
action during execution. For example, the guarded com-
mand construct (see Dijkstra [27] ) allows one to express
a program that computes the gcd of two strictly positive
integers as follows:

input(xo yo)
(x y) (xo yO)
do x >y = x <-x - y
Ox>y == (xy) -(yx)
Ely >x y <-y - x
od
output (x)

This denotes that if x > y, we can execute either x v-
x - y or (x y) - (y x), while if y > x we must execute
y <-y - x. The statements within the do . . . od con-
struct are executed repeatedly until neither condition
x > y or y > x applies, i.e., until x = y. (The terminator
"od" of the construct is merely "do" backwards.) Al-
though for a given input there are many ways of execut-
ing the program, the ultimate output is always the gcd
of the inputs. Extensions of our proof methodology
exist to prove the correctness of such programs.
Parallelism: We have only considered programs that

are executed sequentially by a single computer processor,
but some programs are intended to be executed by sev-
eral processors at the same time. Many different parts of
such a program might be running simultaneously, and
the various processors may cooperate in producing the
ultimate output. Because the processors may interact
with each other during the computation, new obstacles
arise in proving the correctness of a parallel program.
For example, it becomes desirable to show the absence
of deadlock, a situation in which two processors each

halt and wait for the other to conclude some portion of
the task, thus preventing the completion of the pro-
gram's execution. To prove the correctness of parallel
programs requzires special techniques; this is currently an
active research area (cf., Ashcroft [2], Hoare [44],
Owicki and Gries [ 67] ).

Very Large Programs: For the sake of clarity we have
discussed only the verification of small programs, but in
practice it is the large and complex systems that really
require verification. As one would expect, the verifica-
tion of such programs is obstructed by the larger number
and greater complexity of the intermediate assertions
and verification conditions. Furthermore, the specifica-
tions of a large system are likely to be more difficult
even to formulate: one must detail all the situations a
spacecraft guidance system is expected to handle, for
instance, or all the error messages a compiler is expected
to produce. Finally, in a larger system the specifications
are likely to be higher level and more abstract, the dis-
crepancy between the specifications and the implemen-
tation will be greater, and the verification conditions will
be correspondingly more difficult to prove than we have
found so far.

It has been argued that such large programs cannot be
verified unless they are given a hierarchical structure that
reduces their apparent complexity. A hierarchically
structured program will be decomposed into a few top-
level modules, each of which in turn will be decomposed
into a few more detailed modules at a lower level. The
verification of a module at a given level thus involves
only a few lower level modules, each of which may be
regarded as a primitive instruction. Therefore, the pro-
gram becomes understandable, and its verification man-
ageable. (Examples of hierarchical decomposition are
given, e.g., in Parnas f68] and Spitzen et al. [75].)

One might hope that the above methods for proving the
correctness of programs, suitably extended and incorporated
into verification systems, would enable us to guarantee that
programs are correct with absolute certainty. In the balance
of this section we will discuss certain theoretical and philo-
sophical limitations that will prevent this goal from ever being
reached. These limitations are inherent in the program verifi-
cation process, and cannot be surmounted by any technical
innovations.

1) We can never be sure that the specifications are correct.

In verifying a program the system assures us that the pro-
gram satisfies the specifications we have provided. It cannot
determine, however, whether those specifications accurately
reflect the intentions of the programmer. The intentions, after
all, exist only in the mind of the programmer and are inaccess-
ible to a program verification system. If he has made an error
in expressing them, the system has no way of detecting the
discrepancy.
For example, in specifying a sort program one is likely to

assert that the elements of the array are to be in order when
the program halts, but to neglect to assert that the array's
final contents are some permutation of its original contents.
In this event, a program that merely resets the first element
to 1, the second to 2, and so on, may be verified as a correct
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sort program. However, no system will ever be able to detect
the missing portion of the specification, because it cannot read
the mind of the programmer.
To some extent, these difficulties can be remedied by the

use of a well-designed, high4evel assertion language. The pro-
grammer can express his intentions in such a language quite
naturally, and with little chance of error, presumably because
he thinks about his problem in the same terms as he expresses
it.

2) No verifiation system can verify every correct program.

For a system to verify a program, it must prove the appro-
priate verification conditions. Typically, these conditions are
logical statements about the numbers or other data structures.
Any system that attempts to prove such statements is subject
to certain theoretical limitations, no matter how powerful it
may be. In particular, it is known to be impossible (as a con-
sequence of Godel's Incompleteness Theorem) to construct a
system capable of proving every true statement about the
numbers. Consequently, for any verification system there will
be some correct program that it cannot verify, even though its
specifications are correct and complete.
This theoretical limitation does not preclude the construc-

tion of theorem provers useful for program verification. After
all, verification conditions are usually not deep mathematical
theorems, and it is entirely possible that a computer system
will be developed that will be able to verify all the programs
that arise in practice. But no matter how powerful a verifica-
tion system may be, when it fails to verify a program we can
never rule out the possibility that the failure is attributable to
the weakness of its theorem prover, and not to an error in the
program.

3) We can never be certain that a verification system is
correct.

When a program has been verified, we must have confidence
in the verification system before we believe that the program
is really correct. However, a program verifier, like any large
system, is subject to bugs, which may enable it to verify incor-
rect programs. One might suppose that bugs in a verification
system could be avoided by allowing the verifier to verify
itself. Do not be fooled: if the system does contain bugs, the
bugs themselves may cause the program to be verified as cor-
rect. As an extreme case, a verifier with a bug that allowed it
to verify any program, correct or incorrect, would certainly be
able to verify itself.
This philosophical limitation does not imply that there is no

use in developing verification systems. Even if the system has
bugs itself, it may be useful in finding other bugs in computer
programs. A large system (which presumably had some bug),
written by a graduate student to check mathematical proofs,
was able to discover several errors in the Principia Mathematica
of Whitehead and Russell, a classical source in mathematical
logic; a slightly incorrect program verification system could be
of comparable value. Moreover, once we have developed a
verification system, we make it the focus of all our debugging
efforts, instead of spreading our attention over every program
that we construct. In this way, although we can never hope to

achieve utter certainty that the system is correct, we can estab-
lish its correctness "beyond reasonable doubt."

Gerhart and Yelowitz [351 have presented a collection
of programs whose verifications were published in the
literature but which contained bugs. DeMillo et al. [23]
advance a philosophical and "sociological" aigument
against the utility of verifying programs. Dijkstra [291
expresses pessimism about constructing a useful auto-
matic verification system.

Critics of logical techniques for ensuring program cor-
rectness often recommend the traditional approach to
detecting bugs by program testing. In this approach, the
program is actually executed on various inputs, and the
resulting outputs are examined for some evidence of er-
ror. The sample inputs are chosen with the intention of
exercising all the program's components, so that any bug
in the code will be revealed; however, subtle bugs often
escape the most thorough testing process. Some bugs
may escape because they occur only upon some legal
input configuration that was not anticipated, and there-
fore not tried, by the programmer. Other bugs may ac-
tually occur during a test execution but escape observa-
tion because of human carelessness. These problems are
discussed in a special issue of the IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, September 1976, de-
voted to testing.
Some efforts have been made to apply logical tech-

niques to systematize the testing process. For instance,
the SELECT system (Boyer et al. [91) attempts to con-
struct a sample input that will force a given path of the
program to be executed. The EFFIGY system (King
[49]) executes the program on symbolic inputs rather
than concrete numerical quantities, thereby testing the
program for an entire class of concrete inputs at once.

It is unlikely that program-verification systems will
ever completely eliminate the need for testing. Execut-
ing a program is the simplest way to detect obvious bugs.
Furthermore, testing a program that has been proved
"correct" can indicate some aspect of the programmer's
intentions that is not reflected in the specifications.

The techniques we have given in this section establish the
partial correctness of a computer program but not its termina-
tion. We now tum our attention to techniques for proving
the termination of programs.

III. TERMINATION

Proving the termination of programs can be as difficult as
proving partial correctness. For instance, consider the follow-
ing program:

input(x)
while x = 1 do

if even (x) then x v- x/2 else x v- 3x + 1
output(x).

This program is known to terminate for every positive integer
less than 3 - 108. However, for over a decade no researcher
has succeeded in proving its termination for every positive
integer, nor in producing a positive integer for which it fails to
terminate. Resolution of this question could depend on some
deep unknown property of the integers.
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Let us examine the subtractive gcd algorithm (Program A)
again to see informally why we believe it terminates for every
input satisfying the input assertion.

input(xo yo)
{xo >Oandyo >Oand(xo0Ooryo #0)}
(xy) +- (xo yo)

more: {x>Oandy>Oand(x#Oory 0)
and max{u: ujx and uly}=

max {u: ulxo and ul Yo}}
if x = 0 then goto enough
ify >x theny v-y - x else (xy) v- (y x)
goto more

enough: {y = max{u : ulxo and ujIy} }
output(y).

Note that in showing the partial correctness of this program
we have established as invariant that x and y will always be
nonnegative at more. Now, observe that every time we go
around the loop, either x is reduced, or x is held fixed and y
is reduced. First, x is reduced if x and y are interchanged,
because y is less than x in this case. On the other hand, ify is
set to y - x, then x is held fixed andy is reduced, because x is
positive when this assignment is executed. The crux of the
argument lies in observing that we cannot forever continue
reducing x, or holding x fixed and reducing y, without even-
tually making one of them negative, contradicting the
invariant.
To make this argument more rigorous, we introduce the no-

tion of the lexicographic ordering . on pairs of nonnegative
integers. We will say that

(x1 Y1) (x2 YA)
i.e., (x1 y13 is greater than (x2 Y2) under the lexicographic
ordering, if

X1 >X2
or x1=x2andy1>Y2.

[Thus (2 2) .. (1 100) and (1 4) (1 3).1 The set of pairs of
nonnegative integers has the special property that there exist
no infinite decreasing sequences under this ordering; i.e., there
are no sequences such that

(X1 Y 1) >(X2y2) .>(X3 y'>*
Proof: Suppose that (x Yi), (x2 Y2), (x3 y3),.*. is

an infinite decreasing sequence of pairs of nonnegative
integers. The definition of the lexicographic ordering
then requires that xl > x2 > X3 > * *, but because the
nonnegative integers themselves admit no infinite de-
creasing sequences, there must exist some n such that
Xn = Xn = Xn.2 = (Otherwise we could extract an

infinite decreasing subsequence from xl, x2, X3, *
The definition of lexicographic ordering, again, implies
that then Yn > Yn+i > Yn+2 > - - * , which violates the
same property of the nonnegative integers.

In general, if a set is ordered in such a way that there exist
no infinite decreasing sequences, we say that the set is a well-
founded set, and the ordering a well-founded ordering. Thus,
the lexicographic ordering is a well-founded ordering on the
set of pairs of nonnegative integers, as we showed above.

The nonnegative integers themselves are well-founded under
the usual > ordering. However, there exist other well-founded
orderings over the nonnegative integers. For example, the
ordering defined so that x - y ify properly divides x, i.e.,

ylx andy x,

is a well-founded ordering.
The well-founded set concept allows us to formulate a more

rigorous proof of the termination of Program A. To construct
such a proof, we must find a set W with a well-founded order-
ing a-, and a termination expression E(x y), such that when-
ever control passes through the label more, the value of E(x y)
belongs to W, and such that every time control passes around
the loop, the value of E(x y) is reduced under the ordering > .
This will establish the termination of the program, because if
there were an infinite computation, control would pass through
more an infinite number of times; the corresponding sequence
of values of E(x y) would constitute an infinite decreasing
sequence of elements of W, contradicting the well-foundedness
of the set.
To formulate such a termination proof for Program A, we

must prove the following three termination conditions for
some invariant assertion invariant(x y) at more:

1) invariant(x y) =- E(x y) e W,

(the value of the termination expression belongs to W
when control passes through more),

2) invariant(x y) and x #0 andy > x
=.. E(x y) > E(x y - x)
(the value of the termination expression is reduced if
control passes through the then branch of the loop),
and

3) invariant(x y) and x #Oand y <x
==> E(x y) > E(y x)
(the value of the termination expression is reduced if
control passes through the else branch of the loop).

Because the invariant will be true every time control passes
through more, the above conditions suffice to establish
termination.
Perhaps the most straightforward way to construct such a

termination proof for Program A is to follow our informal
demonstration and to take W to be the set of pairs of nonneg-
ative integers, > to be the lexicographic ordering, and E(x y)
to be the pair (x y) itself. The invariant assertion invariant(x y)
can simply be taken to be x >0 and y >0. The termination
conditions are then

1) x>Oandy>0
> (x y) e {pairs of nonnegative integers},

2) x>Oandy>Oandx*Oandy>x
== (x y).. (x y -x),and

3) x>Oandy>Oandx#Oandy<x
==> (x y) .. (y x).

We have already indicated in our informal argument the justifi-
cation for these conditions.
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A trickier termination proof may be constructed by taking
W to be the nonnegative integers, .. to be the usual > ordering,
and E(xy) to be the expression 2x +y. The termination con-
ditions are then

1) x>Oandy>O
==> 2x +y e { the nonnegative integers},

2) x>Oandy>Oandx#Oandy>x
==- 2x +y>2x +(y - x), and

3) x>Oandy>Oandx Oandy<x
== 2x+y>2y+x.

These conditions can also be easily established.
The above description illustrates how to prove the termina-

tion of a program with only a single loop. If we want to apply
the well-founded ordering method to show the termination of
a program with several loops, we must designate a particular
loop label within each of the program's loops. We choose a
single well-founded set and with each designated loop label we
associate a termination expression whose value belongs to the
well-founded set. These expressions must be chosen so that each
time control passes from one designated loop label to another,
the value of the expression corresponding to the second label
is smaller than the value of the expression corresponding to
the first label. Here, "smaller" means with respect to the
ordering of the chosen well-founded set. This method estab-
lishes the termination of the program, because if there were
an infinite computation of the program, control would pass
through an infinite sequence of designated labels; the corre-
sponding sequence of values of the termination expressions
would constitute an infinite decreasing sequence of elements
of the well-founded set, contradicting the well-foundedness
of the set, as in the one-loop case.
The well-founded set approach introduces machinery to

prove termination completely different from that required to
prove partial correctness. There is an alternate approach
which extends the invariant-assertion method to prove termi-
nation as well as partial correctness. In this approach we alter
the program, associating with each loop a new variable called a
counter. The counter is initialized to 0 before entering the
loop and incremented by 1 within the loop body. We must
also supply a new intermediate assertion at a point inside the
loop, expressing that the corresponding counter does not
exceed some fLxed bound. In proving that the new assertion is
invariant, we show that the number of times the loop can be
executed is bounded. (If for some reason control never passes
through the assertion, the number of times the loop can be
executed is certainly bounded-by zero.) Once we have proved
that each loop of the program can only be executed a finite
number of times, the program's termination is established.
For instance, to prove that our subtractive gcd algorithm

(Program A) tenninates, we introduce a counter i, and estab-
lish that the assertion

i < 2xo +Yo

is invariant at more. To show this, it is actually necessary to
prove the stronger assertion

x>Oandy>Oand2x+y+i<2xo +Yo

is invariant at more. (The stronger assertion implies the weaker
because ifx > 0 and y > 0 then 2x + y > 0.)
Augmented with the counter i and the new intermediate

assertion, Program A appears as follows:

Program A (with counter):
input(xo Yo)
{xo >O andyo >O and (xo #O oryo0 0)}
(xy) v- (xo yo)i+-o

more: {x >0 andy >O and 2x +y +i<2xo +Yo}
if x = 0 then goto enough
ify x theny*-y - xelse(xy)*-(yx)
i.<-i+ 1
goto more

enough: output(y).

The new assertion is clearly true at more initially; it remains
true after each execution of the loop body, because each exe-
cution reduces the quantity 2x +y by at least 1, and i is in-
creased by only 1.
The counter method yields more information than the well-

founded set method, because it enables us to establish a bound
on the number of times each loop is executed and, hence, on
the running time of the program, while termination is being
proved. By the same token, however, the counter method is
more difficult to apply, because it requires that suitable
bounds be known, and we often can prove that a program
terminates without knowing such bounds.

Well-founded sets were first used to prove the termina-
tion of programs by Floyd [32], in the same paper in
which he introduced the invariant-assertion method.
The alternate approach, using counters, was suggested
by Knuth [ 50, p. 19] . The program verifier of Luckham
and Suzuki [56] proves termination by this method.

IV. WELL-FOUNDED INDUCTION

The well-founded sets that we have used to prove termina-
tion actually have a much broader domain of application; they
can serve as the basis for a proof by mathematical induction
using the following principle ofwell-founded induction:

Let W be a set with well-founded ordering >.
To prove P(w) holds for every element w of W,

consider an arbitrary element w ofW and prove that
P(w) holds under the assumption that
P(w') holds for every element w' ofW such that
w .-W.

In other words, in attempting to prove that every element of a
well-founded set has a certain property, we can choose an ar-
bitrary element w of the set, assume as our induction hypothe-
sis that every element less than w (in the well-founded order-
ing) has the property, and prove that w has the property too.
(In the special case that no element of W is less than w, the
inductive assumption does not tell us anything, and is therefore
of no help in proving that w has the property.)
-For example, suppose we want to show that every integer
greater than or equal to 2 can be expressed as a product of
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prime numbers. We can use the principle of well-founded
induction, taking W to be the set of integers greater than or

equal to 2, and >' to be the ordinary "greater than" ordering,
which is a well-founded ordering of W. Thus, to prove the de-
sired property, we let w be any element of W, and show that
w can be expressed as a product of prime numbers using the
induction hypothesis that every element of W less than w can

be expressed as a product of prime numbers. The proof dis-
tinguishes between two cases: if w is a prime, the property
holds, because the product of the single prime w is w itself.
On the other hand, ifw is not a prime, it is the product of two
integers w, and w2, each smaller than w and greater than or

equal to 2. Because w, and w2 are each members of W less
than w under the ordering >., our induction hypothesis implies
that each of them is a product of primes, and hence w is also a

product of primes. We then conclude by well-founded induc-
tion that every member ofW can be expressed as a product of
primes. (Altematively, we could prove the same property
taking the well-founded ordering x > y to be the properly
divides relation defined earlier, i.e., ylx and y Ox. Clearly, if
w is the product of w, and w2, then w > wI and w w2

under this ordering.)

The validity of the principle of well-founded induction
is a direct consequence of the definition of a well-
founded set. For, suppose we have used the induction
hypothesis to prove that P(w) holds for an arbitrary w,

but that there actually exists some element w, of W
such that - P(wI). Then for some element w2 such that
WI > W2, -P(W2) holds as well; otherwise, our proof
using the induction hypothesis would allow us to con-

clude P(wI), contrary to our supposition. The same rea-

soning applied to w2 implies the existence of an element
W3 such that W2 e W3 and -P(w3), and so on. In this
way we can construct an infinite descending sequence of
elements wI, w2, W3, * of W, such that w1 > w2 >
W3 * * *, contradicting the well-foundedness of W.

The well-founded ordering method we introduced for proving
termination may be regarded as an application of the principle
of well-founded induction. For instance, recall that to apply
the well-founded set method to prove the termination of Pro-
gram A, we need to find a well-founded set W ordered by the
ordering >- and a termination expression E(x y) such that
whenever control passes through more, the value of E(x y)
belongs to W, and such that whenever control passes around
the loop, the value of E(x y) is reduced under the ordering >
To phrase this method as a well-founded induction proof, we
prove the property that if during a computation control
passes through more, the computation will terminate. The
well-founded set used as a basis for the induction is the set of
pairs of nonnegative integers, and the orderingi .> is defined
by

(w1 w2) ';. (ws w'2) if E(w1 w2) .- E(w1 wl).

We show that the property holds for arbitrary values (wl w2)
of the pair (x y) at more, assuming the induction hypothesis
that the program will terminate if control passes through more
with values (w' w2) of (xy) such that (wI w2) (w1 w'2),

i.e., such that E(w1 w2) '- E(w' w'2). Following the two well-
founded sets in the termination proofs of the previous section,
we can either take E(x y) to be (x y) itself, and->' to be the
lexicographic ordering between pairs of nonnegative integers,
or we can take E(x y) to be 2x +y, and > to be the usual
greater than ordering between nonnegative integers. The
details of the proof then correspond closely to the steps in the
well-founded set termination proof.
In proving partial correctness by the invariant-assertion and

the subgoal-assertion methods, we employed induction based
on the number of steps in the computation; for this reason
they are classified as forms of computational induction. On
the other hand, our proof of termination employed an induc-
tion independent of the computation; such proofs are gen-
erally referred to as structural induction proofs.
In subsequent sections we will encounter the principle of

well-founded induction in many guises.

V. TOTAL CORRECTNESS
So far we have considered correctness separately from termi-

nation; to prove that a program halts and produces the desired
result required two separate proofs. In this section we will
introduce a technique that establishes the total correctness of
a program, i.e., its termination and correctness, with a single
proof.
In our previous correctness proofs we attached assertions to

points in the program, with the intended meaning that the as-
sertion is to be invariant, that is to hold every time control
passes through the corresponding point. Conceivably, the as-
sertion could be proved to be invariant even though control
never passes through the point in question. In particular, we
can prove that the output assertion is invariant even though
the program never halts; thus, a separate termination proof is
required.
In the method we are about to introduce, we will also attach

assertions to points in the program, but with the intended
meaning that sometime control will pass through the point and
satisfy the attached assertion. In other words, control may
pass through the point many times without satisfying the as-
sertion, but control will pass through the point at least once
with the assertion satisfied; therefore, we call these assertions
intermittent assertions. If we manage to prove that the output
assertion is an intermittent assertion at the program's exit, we
have simultaneously shown that the program must halt and
satisfy the output assertion. This establishes the program's
total correctness.
We will use the phrase

sometime Q at L

to denote that Q is an intermittent assertion at the label L, i.e.,
that sometime control will pass through L with assertion Q sat-
isfied. (Similarly, we could have used the phrase "always Q at
L" to indicate that Q is an invariant assertion at L.) If the
entrance of a program is labelled start and its exit is labelled
enough, we can express the total correctness of the program
with respect to an input assertion P and output assertion R by

if sometime P at start
then sometime R at enough.
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Generally, to prove this statement as a theorem, we must affix
intermittent assertions to some of the program's intermediate
points, and supply lemmas to relate these assertions. The
proof of these lemmas typically employs well-founded
induction.
To illustrate this method we introduce a new program to

compute the greatest common divisor.

Program B (the symmetnrc algorithm):
input(xo Yo)

start: (xy)+- (xo Yo)
more: ifx = y then goto enough

reducex: ifx>y then x -x - y
goto reducex

reducey: ify >x theny <-y - x
goto reducey

goto more
enough: output(y).

This program is only intended to be used for positive xo and
yo, whereas the previous Program A can also be used when
either xo = 0 or yo = 0. The indenting indicates that the two
instructions x v- x - y and goto reducex are to be treated as a
block; both are to be executed only if x > y. Similarly, the
two instructionsy <-y - x and goto reducey are executed only
ify> x.
The intuitive basis for this program rests on the following

properties of the integers:

a) ulxanduIy=uIx -yanduly
(the common divisors of x - y and y are the same as
those ofx and y), or, equivalently,

b) ulx anduly =ulx anduly -x
(the common divisors of x and y - x are the same as
those ofx andy), and

c) max{u: uly} =y if y>O
(any positive integer is its own greatest divisor).

We would like to use the intermittent-assertion method to
prove the total correctness of Program B. The total correctness
can be expressed as follows:

Theorem: if sometime xo >0 and yo >0 at start
then sometimey = max{u : ulxo and uIyo}

at enough.

This theorem states the termination as well as the partial cor-
rectness of Program B, because it asserts that control must
eventually reach enough, the exit of the program, given that it
begins execution with positive xo and yO.
To prove this theorem we need a lemma that describes the

internal behavior of this program:

Lemma: if sometime x = a and y = b and a,b >O at more
or sometime x =a andy = b and a, b >0 at

reducex
or sometime x = a andy = b and a, b >0 at

reducey
then sometimey = max{u : ula and ulb} at
enough.

To show that the lemma implies the theorem, we assume that

sometime x0 >0 and Yo > 0 at start.

Then control passes to more, with x and y set to xo and yo,
respectively, so we have

sometime x = xo andy =yo and xo,y0 >O at more.

But then the lemma implies that

sometimey = max{u : u lxo and uIyo} at enough,

which is the desired conclusion of the theorem,
It remains to prove the lemma. We assume

sometime x = a and y = b and a, b > 0 at more
or sometime x = a andy = b and a, b >0 at reducex
or sometime x = a andy = b and a, b >0 at reducey

and show that

sometime y = max{u : ula and ulb} at enough.

The proof employs well-founded induction on the set of pairs
of nonnegative integers, under the well-founded ordering.
defined by

(ab)»(a'b') if a+b>a'+b'.

In other words, during the proof we will assume that the
lemma holds whenever x = a' andy = b', where a + b > a' + b';
i.e., we take as our induction hypothesis that

if sometime x = a' andy = b' and a', b'>O at more
or sometime x = a' andy = b' and a', b' >0 at reducex
or sometime x = a' and y = btand a', b' > 0 at reducey

then sometime y = max{u : ula' and ujIb'} at enough.

The proof distinguishes between three cases.
Case a = b: Regardless of whether control is at more,

reducex, or reducey, control passes to enough with y = b, so
that

sometime y = b at enough.

But in this case b = max{u: ulb} = max{u : ula and ulb}, by
Property c) above. Thus,

sometimey = max{u : ula and uab} at enough,

which is the desired conclusion of the lemma.
Case a>b: Regardless of whether control is at more,

reducex, or reducey, control reaches reducex and passes
around the top inner loop, resetting x to a - b, so that

sometime x = a - b andy = b at reducex.

For simplicity, let us denote a - b by a' and b by b'. Note
that

a',b>O0
a + b >a' + b', and
max{u : ula' and ulb'} = max{u : ula - b and ulb}

= max{u: ula and ulb}.
This last condition follows from Property a) above.
Because a', b' >0 and a + b > a' + b', the induction hypoth-

esis implies that
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sometime y = max{u: ula' and ulb'} at enough;

i.e., by the third condition above,

sometimey = max{u: ula and ulb} at enough.

This is the desired conclusion of the lemma.
Case b >a: This case is disposed of in a manner symmetric

to the previous case.
This concludes the proof of the lemma. The total correct-

ness of Program B is thus established.
Let us see how we would prove the correctness and termina-

tion of Program B if we were using the methods of the previous
sections instead.
The partial correctness of Program B is straightforward to

prove using the invariant-assertion method introduced in Sec-
tion II. The invariant-assertions at more, reducex, and reducey,
can all be taken to be

x > 0 andy > 0
and max{u: ulx and uly} = maxfu : ulxo and ulyo}.
In contrast, it is awkward to prove the termination of this

program by the well-founded ordering approach we discussed
in Section III; it is possible to pass from more to reducex, from
reducex to reducey, or from reducey to more without altering
the value of any program variables. Consequently, it is diffi-
cult to find expressions whose values are reduced whenever
control passes from one of these labels to the next. One pos-
sibility is to take the well-founded set to be the pairs of non-
negative integers ordered by the lexicographical ordering; the
termination expressions corresponding to the loop labels are
taken to be

(x+y 2) at more,
ifx Ay then (x +y 1) else (x +y 4) at reducex, and
ifx <y then (x +y 0) else (x +y 3) at reducey.

It can be shown that as control passes from one loop label to
the next the values of the corresponding termination expres-
sions decrease. Although this approach is effective, it is un-
duly complicated.
The above example illustrates that the intermittent-assertion

method may be more natural to apply than one of the earlier
methods. It can be shown that the reverse is not the case: a
proof of partial correctness by either of the methods of Sec-
tion II or of termination by either of the methods of Section
III can be rephrased directly as a proof using intermittent as-
sertions. In this sense, the intermittent assertion method is
more powerful than the others.

The intermittent-assertion method was first formulated
by Burstall [14] and further developed by Manna and
Waldinger [61 1. Different approaches to its formaliza-
tion have been attempted, using predicate calculus
(Schwarz 172] ), a deductive system (Wang [84] ), and
modal logic (Pratt [70]).

VI. CORRECTNESS OF RECURSIVE PROGRAMS
So far, we have indicated repeated operations by a particular

kind of loop, the iterative loop, which is expressed with the
goto or while statement. We are about to introduce a new

looping construct that is in some sense more powerful than
the iterative loop. This construct, the recursive call, allows a
program to use itself as its own subprogram. A recursive call
denotes a repeated operation because the subprogram can then
use itself again, and so on.
For instance, consider the following recursive version of our

subtractive gcd algorithm (Program A):

Program A (a recursive version):
gcdminus(x y) :== if x = 0

theny
else ify > x

then gcdminus(x y - x)
else gcdminus(y x).

In other words, to compute the gcd of inputs x and y, test if
x = 0; if so, return y as the output; otherwise test if y > x; if
so, return the value of a recursive call to this same program on
inputs x and y - x; if not, return the value of another recursive
call, with inputs y and x. For example, in computing the gcd
of 6 and 3 we get the following sequence of recursive calls:

gcdminus(6 3) -== gcdminus(3 6) == gcdminus(3 3)
t= gcdminus(3 0) gcdminus(O 3) 3.

Thus, the value of gcdminus(6 3) is 3. Although a recursive
definition is apparently circular, it represents a precise descrip-
tion of a computation. Note that gcdminus is a "dummy"
symbol and, like a loop label, can be replaced by-any other
symbol without changing the meaning of the program.
A recursive computation can be infinite if the execution of

one recursive call leads to the execution of another recursive
call, and so on, without ever returning an output. For ex-
ample, the program

gcdnostop(x y) == if x = 0
then y
else ify > x

then gcdnostop(x y - x)
else gcdnostop(x - y y),

which is obtained from Program A by altering the arguments
of the second recursive call, computes the gcd of those inputs
for which it halts. However, this program will not terminate
for many inputs, e.g., if x $0 andy = 0 or ifx 00 and y = x.
Thus, for x = 3 andy = 3 we obtain the infinite computation

gcdnostop(3 3) ,= gcdnostop(3 0) <- gcdnostop(3 0)
<== gcdnostop(3 0) * -

.

Our recursive version of Program A describes essentially the
same computation and produces the same outputs as the
iterative version. In fact, it is straightforward to transform any
iterative program into a recursive program that performs the
same computation. The reverse transformation, however, is
not so straightforward; in translating a recursive program into
a corresponding iterative one, it is often necessary to intro-
duce devices to simulate the recursion, complicating the pro-
gram considerably. Some computational problems can be
solved quite naturally by a recursive program for which there
is no iterative equivalent of comparable simplicity.
As a new specimen for our study of recursion we will intro-
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duce a recursive cousin of the greatest common divisor algo-
rithm of Euclid, which appeared in his Elements over 2200
years ago.

Program C (the Eucidean algorithm):
gcdrem(xy) if x = 0

then y
else gcdrem(rem(y x) x).

Here rem(y x) indicates the remainder wheny is divided by x.
Program C, like Program A, computes the ged of any non-
negative integers x and y, where x and y are not both zero.
The correctness of this program will be seen to depend on the
following properties of the integers:

a) utxanduly< >uIxandujrem(yx) ifx#0O
(the common divisors of x and y are the same as those
ofx and rem(y x), ifx # 0),

b) ulO
(every integer divides 0),

c) max{u:uly}=y ify>0
(every positive integer is its own greatest divisor), and

d) x > rem(y x) > 0 if x > 0.

The reader may be interested to see a proof of Property
a). Suppose that ulx and uly and thatx#0. We need
to show that ul rem(y x). We know that x = k * u and
y = I - u, for some integers k and 1. But rem(y x) is de-
fined so that y = q - x + rem(y x), where q is the quotient
of y and x. Therefore rem(y x) = y - q -x = I * u -
q -k u=u - (1- q -k), so that uIrem(y x), as we in-
tended to prove. The proof in the opposite direction is
similar.

We would like to introduce techniques for proving the cor-
rectness and termination of recursive programs. In proving the
properties of iterative programs, we often employed the prin-
ciple of well-founded induction. We distinguished between
computational induction, which was based on the number of
steps in the computation, and structural induction, which was
independent of the computation. These versions of the in-
duction principle have analogues for proving properties of re-
cursive programs. We will illustrate these techniques in proving
the correctness and termination of the above recursive Euclidean
algorithm (Program C).
To apply computational induction to Program C, we per-

form induction on the number of recursive calls in the com-
putation of gcdrem(x y). (This number is finite if we assume
that the computation terminates.) Thus, in proving that some
property holds for gcdrem(x y), we assume inductively that
the property holds for gcdrem(x' y'), where x' and y' are any
nonnegative integers such that the computation of
gcdrem(x' y') involves fewer recursive calls than the computa-
tion ofgcdrem(x y).
Now, let us use computational induction to show that Pro-

gram C is partially correct with respect to the input specifica-
tion

x>Oandy>Oand(x #Oory#0),
and the output specification

gcdrem(x y) = max {u: ul x and ul y}.

Thus, we must prove the property that

for every input x and y such that
x >0 andy >0 and (x #0 ory = 0),

if the computation ofgcdrem(x y) terminates, then
gcdrem(xy)=max{u:ulx anduly}.

Therefore, we consider arbitrary nonnegative integers x and y
and attempt to prove that the above property holds for these
integers, assuming as our induction hypothesis that the prop-
erty holds for any nonnegative integers x' and y' such that the
computation of gcdrem(x' y') involves fewer recursive calls
than the computation ofgcdrem(x y).
Thus, we suppose that

x>0 andy20 and (x #0 or y # 0),

and that the computation of gcdrem(x y) terminates. We
would like to show that

gcdrem(x y) = max{u: ul x and ul y}.

Following the definition of gcdrem, we distinguish between
two cases.

If x = 0, then Program C dictates that

gcdrem(x y) = y.

But because we have assumed that x # 0 or y # 0 and that
y >0, we know that y >0. Therefore, by Properties b) and

max {u: u Ix and u y} max {u: u I y} = y.

Thus,
gcdrem(x y) = y = max{u:u x and u y},

as we wanted to prove.
On the other hand, ifx 0O, Program C dictates that

gcdrem(x y) = gcdrem(rem( y x) x).

Because a recursive call to gcdrem(rem(y x) x) occurs in the
computation of gcdrem(x y), and because the computation
has been assumed to terminate, the computation of
gcdrem(rem(y x) x) involves fewer recursive calls than the
computation ofgcdrem(x y).
Therefore we would like to apply the induction hypothesis,

taking x' to be rem(y x) and y'to be x. For this purpose, we
attempt to prove the antecedent of the induction hypothesis,
i.e.,

rem(y x) >0 andx >0 and (rem(y x) #0 orx # 0)
and that the computation of gcdrem(rem(y x) x) terminates.
However, we know that rem(y x) > 0 by Property d), that
x > 0 by the input specification, and that x # 0 by our case
assumption. Furthermore, we know that the computation of
gcdrem(rem(y x) x) terminates, because it is part of the com-
putation of gcdrem(x y), which has been assumed to terminate.
Our induction hypothesis therefore allows us to conclude that

gcdrem(rem(y x) x) = max {u: u I rem(y x) and u I x}.

But, by Property a),

max {u: ulrem(y x) and ulx} = max {u: ulx and uly},
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and therefore

gcdrem(x y) = max {u: u Ix and u I y},
as desired. This concludes the proof of the partial correctness
of Program C.
In the above computational-induction proof we were forced

to assume that the computation terminates. However, if we
choose an appropriate well-founded ordering independent of
the computation, we can employ structural induction to prove
termination as well as correctness. For example, suppose we
want to prove the termination of Program C for all inputs
satisfying the input specification; in other words,

For every input x andy such that
x>0 andy >0 and (x 00ory # 0),

the computation ofgcdrem(x y) terminates.

The well-founded set which will serve as the basis for the
structural induction is the set W of all pairs (w, w2) of non-
negative integers, under the ordering > defined by

(w1 w2) ./(wl w) ifwI >w'.
(Yes, the second component is ignored completely.)
To prove the termination property, we consider arbitrary

nonnegative integers x and y and attempt to prove that the
property holds for these integers, assuming as our induction
hypothesis that the property holds for any nonnegative integers
x' andy' such that (xy) >- (x'y'), i.e.,x >x'.
Thus, we suppose that

x>Oandy>Oand(x =0 ory =0).

Following the definition of gcdrem, we again distinguish be-
tween two cases. Ifx = 0, the computation terminates immedi-
ately. On the other hand, if x # 0, the program returns as its
output the value of the recursive call gcdrem(rem(y x) x). Be-
cause x > rem(y x), by Property d), we have

(x y) > (rem(y x) x),
and therefore we would like to apply the induction hypothesis,
taking x' to be rem(y x) and y' to be x. For this purpose, we
prove the antecedent of the induction hypothesis, that

rem(yx)>O andx >O and(rem(yx)#Oorx 0),
using Property d), the input specification, and the case assump-
tion, respectively. The consequent of the induction hypothesis
tells us that the computation of gcdrem(rem(y x) x), and
therefore ofgcdrem(x y), terminates. This concludes the proof
of the termination of Program C.
Of course, we could have used structural induction, with the

same well-founded ordering, to prove the total correctness of
Program C. For this purpose we would prove the property
that

For every input x and y such that
x>O andy>O and(x O ory O),

the computation ofgcdrem(x y) terminates and
gcdrem(x y) = max {u: u I x and u I y}.

Euclid, himself, presented a "proof" of the properties
of his gcd algorithm. His termination proof was an in-
formal version of a well-founded ordering proof, but his
correctness proof considered only two special cases, in
which the recursive call is executed precisely one or

three times during the computation. The principle of
mathematical induction, which would have been nec-

essary to handle the general case, was unknown at the
time.

The reader may have noticed that the proofs of correctness
and termination for the recursive program presented here did
not require the invention of the intermediate assertions or
lemmas that our proofs for iterative programs demanded. He
may have been led to conclude that proofs of recursive pro-
grams are always simpler than proofs of the corresponding
iterative programs; in general, this is not the case. Often, in
proving a property by the well-founded induction principle, it
is necessary to establish a more general property in order to
have the advantage of a stronger induction hypothesis. For
example, suppose we wanted to prove that Program C satisfies
the property that

gcdrem(x y)Ix.
If we tried to apply an inductive proof directly, the induction
hypothesis would yield merely that

gcdrem(rem(y x) x)l rem(y x);

this assumption is not strong enough to imply the desired
property. To prove the property we must instead prove a more

general property, such as that

gcdrem(x y)lx and gcdrem(x y)l y-

The induction hypothesis would then yield that

gcdrem(rem(y x) x)l rem(y x) and gcdrem(rem( y x) x)l x,

which is enough to imply the more general result. It may

require considerable ingenuity to find the appropriate stronger
property that will enable the inductive proof to go through.
We have used structural induction to show the termination

of a program, and we have indicated how it can be used to
show the total correctness of a program. We will now show
how structural induction can be used to prove an entirely
different property: the equivalence of two programs.
We say that two programs are equivalent with respect to

some input specification if they terminate for precisely the

same legal inputs, and if they produce the same outputs when
they do terminate. We will write f(x) g(x) if, either the
computations of f(x) and g(x) both terminate and yield the
same output, or if they both fail to terminate. Then we can

say that f is equivalent to g with respect to a given input speci-
fication if, for all x satisfying the input specification, f(x)
g(x).

Let us see how structural induction can be applied to prove
the equivalence of the subtractive gcd algorithm (Program A)
and the Euclidean gcd algorithm (Program C) we have intro-

The proof would be similar to the above termination proof.
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gcdrem(xy) if x =0
theny
else gcdrem(rem( y x) x),

and the subtractive algorithm is

gcdminus(x y) 4= ifx =0
theny
else ify x

then gcdminus(x y - x)
else gcdminus(y x).

The remainder function rem can be defined by the recursive
program

rem(u v) u- ifu <v
then u
else rem(u - v v),

where v is assumed not to be zero.
To establish the equivalence of the two gcd programs, we

need to prove that

ifx>0 andy>0 and (x 00ory #0)
then gcdrem(x y) gcdminus(x y).

The proof of this property is a straightforward application of
structural induction, in which the well-founded set is the set
of pairs of nonnegative integers ordered by the lexicographic
ordering > . We consider arbitrary nonnegative integers x andy
and attempt to prove that the equivalence property holds for
these integers, assuming as our induction hypothesis that the
property holds for any nonnegative integers x' and y' such
that(xy)P (x'y').
Thus, we suppose that

x >0 andy >0 and (x #0 ory #0)

and attempt to prove that

gcdrem(x y) gcdminus(x y).

The proof distinguishes between several cases.
If x = 0, both programs terminate and yield y as their out-

put.
On the other hand, if x # 0 and y < x, the Euclidean algo-

rithm executes a recursive call

gcdrem(rem(y x) x),

or (by the definition of rem, since y < x)

gcdrem(y x).

In this case, the subtractive algorithm executes a recursive call

gcdminus(y x).

Recall that x > y, and therefore that (xy) > (y x). Thus, be-
cause y and x satisfy the input specification

y>0 andx>0 and (y #0 orx #0),
our induction hypothesis yields that

gcdrem(y x) -gcdminus(y x),

gcdrem(x y) gcdminus(x y).

Finally, ifx O buty > x, the Euclidean algorithm executes
a recursive call

gcdrem(rem(y x) x),

or (by the definition of rem)

gcdrem(rem(y - x x) x),

or (by the definition ofgcdrem)

gcdrem(x y - x).

In this case, the subtractive algorithm executes a recursive call

gcdminus(x y - x).

Note that x > 0, and therefore that (x y) .- (x y - x). Thus,
because here x andy - x satisfy the input specification

x >0 andy - x >0 and (x #0 ory - x #0),

the induction hypothesis yields that

gcdrem(x y - x) =gcdminus(x y - x),
i.e., (in this case)

gcdrem(x y) gcdminus(x y).

This concludes the proof of the equivalence of the two gcd
algorithms.
The two ged programs we have shown to be equivalent both

happen to terminate for all legal inputs. However, the same

proof technique could be applied as well to show the equiva-
lence of two programs that do not always terminate, provided
that they each fail to terminate for the same inputs.
In general, to solve a programming problem can require not

one but a system ofrecursive programs, each of which may call
any of the others. Even our simple recursive Euclidean algo-
rithm can be regarded as a system of programs, because gcdrem
calls the recursive remainder program rem. Everything we have
done in this section can be extended naturally to treat such
systems of programs.

Various forms of computational induction were applied
to recursive programs by deBakker and Scott [22],
Manna and Pnueli [59], and Morris [641]. The structural
induction method was first presented as a technique for
proving properties of recursive programs by Burstall
[13]. A verification system employing this method
was implemented by Boyer and Moore [ 10] .

VII. PROGRAM TRANSFORMATION
Up to now we have been discussing ways of proving the

correctness and termination of a given program. We are about
to consider logical techniques to transform and improve the
given program. These transformations may change the compu-
tation performed by the program drastically, but they are

guaranteed to produce a program equivalent to the original; we
therefore call them equivalence-preserving transformations.
Usually, a sequence of such transformations is applied to
optimize the program, i.e., to make it more economical in its

i.e., (in this case)
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Perhaps the simplest way of expressing a transformation is as
a rule that states that a program segment of a certain form can
be replaced by a program segnent of another form.
For example, an assignment statement of form

x<-f(aot * * °'),
which contains several occurrences of a subexpression a, may
be replaced by the program segment

y v- oz

x v-f(y y **Y),
where y is a new variable. This transformation often optimizes
the program, because the subexpression a will only be com-
puted once by the latter segment. For instance, the assign-
ment

x v- (ab)3 + 2(ab)2 + 3(ab)

may be replaced by the segment

y -ab

x÷-y3 +2y2 +3y.

Such elimination of common subexpressions is performed
routinely by optimizing compilers.
Another transformation: in a program segment of form

ifp
then a
else ifp

then ,B
else y

the second test of p, if executed, will always yield false; the
expression (3 will never be evaluated. Therefore, this segment
can always be replaced by the equivalent segment of form

ifp
then a
else y.

Another example: a while loop of form

while p(x) and q(x y) do y <-f(y)
may be replaced by the equivalent statement of form

if p(x) then while q(x y) do y v-f(y),

if y does not occur in p(x) and the evaluation off(y) has no
side effects. The former segment will test both p(x) and q(x y)
and execute the assignment y ÷-f(y) repeatedly, even though
the outcome of the test p(x) cannot be affected by the assign-
ment statement. The latter segment will test p(x) only once,
and execute the while loop only if the outcome is true. There-
fore, this transformation optimizes the program to which it is
applied.
An important class of program transformations are those

that effect the removal of recursive calls from the given pro-
gram. Recursion can be an expensive convenience, because its
implementation generally requires much time and space. If we
can replace a recursive call by an equivalent iterative loop, we
may have achieved a great savings.
One transformation for recursion removal states that a re-

cursive program of form a:

F(u) if p(u)
then g(u)
else F(h(u))

can be replaced by an equivalent iterative program of form ,:

input(u)
more: if p(u) then output(g(u))

u - h(u)
goto more.

To see that the two programs are equivalent, suppose
we apply each program to an input a. First, if p(a) is
true, each program produces output g(a). Otherwise, if
p(a) is false, the iterative program will replace u by h(a)
and go to more: thus, its output will be the same as if its
input had been h(a). In this case, the recursive program
will return F(h(a)); thus, its output, too, is the same as if
its input had been h(a).

For example, this transformation will enable us to replace
our recursive Euclidean algorithm (Program C)

gcdrem(xy) <- if x = 0
theny
else gcdrem(rem( y x) x)

by the equivalent iterative program

input(x y)
more: if x = 0 then output( y)

(x y) *- (rem(y x) x)
goto more.

For some forms of recursive programs, the corresponding
iterative equivalent is more complex. For instance, a recursive
program of form

F(u) -== if p(u)
then g(u)
else k(u) + F(h(u))

can be transformed into the iterative program of form

input(u)
Z <-O:

more: if p(u)
then output(z + g(u))
else (uz)+-(h(u) z + k(u))
goto more.

However, the iterative program requires the use of an addi-
tional variable z to maintain a running subtotal. A more
complex recursive program, such as one of form

F(u) if p(u)
then g(u)
else k(F(h1 (u)) F(h2 (a))),

cannot be transformed into an equivalent iterative program
without introducing considerable intricacy.
Although not every recursive program can be transformed

readily into an equivalent iterative program, an iterative pro-
gram can always be transformed into an equivalent system
of recursive programs in a straightforward way. This transfor-
mation involves introducing a recursive program corresponding
to each label of the given iterative program. For example, if
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the iterative program contains a segment of form

LI: if p(x)
then output(g(x))
else x e- h(x)

goto L2,

the corresponding recursive program will be

Ll(x) -== if p(x)
then g(x)
else L2(h(x)).

The idea behind this transformation is that Ll(a) denotes the
ultimate output of the given iterative program if control passes
through label LI with x = a. By this transformation we can
replace our symmetric gcd algorithm (Program B) by an
equivalent system of recursive programs. The original program
may be written as

input(x y)
start:
more: ifx =y then output(y)

reducex: ifx >y then x vx - y
goto reducex

reducey: ify >x theny *-y - x
goto reducey

goto more.

The equivalent system of recursive programs is

start(x y) <- more(x y)
more(x y) <== if x = y then y else reducex(x y)
reducex(x y) == ifx >y then reducex(x - y y)

else reducey(x y)
reducey(x y) < ify > x then reducey(x y - x)

else more(x y).
The output of the system for inputs x and y is the value of
start(x y). This transformation does not improve the efficiency
of the program, but the simplicity of transforming an iterative
program into an equivalent recursive program, and the com-
plexity of performing the opposite transformation, substan-
tiates the folklore that recursion is a more powerful program-
ming feature than iteration.

Paterson and Hewitt [69] have studied the theoretical
basis for the difficulty of transforming recursive pro-
grams into equivalent iterative programs. The reverse
transformation, from iterative to recursive programs, is
due to McCarthy [63].
Equivalence-preserving transformations have been

studied extensively, and some of these have been in-
corporated into optimizing compilers. The text of Aho
and Ullman [1] on compilers contains a chapter on
optimization.
Some more ambitious examples of equivalence-pre-

serving program transformations are discussed by Standish
et al. [76]. An experimental system for performing
such transformations was implemented by Darlington
and Burstall [21 ].

The above transformations are all equivalence preserving:
for a given input, the transformed program will always produce
the same output as the original program. However, we may be
satisfied to produce a program that computes a different out-

put from the original, so long as it still terminates and satisfies
the same input-output assertions. For example, if we are
optimizing a program to compute the square root of a given
real number within a tolerance, we will be satisfied if the
transformed program produces any output within that range.
In the remainder of this section, we will discuss the correctness-
preserving transformations; such a transformation yields a
program that is guaranteed to be correct, but that is not nec-
essarily equivalent to the original program.
Correctness-preserving transformations are applied to pro-

grams that have already been proved to be correct; they use
information gathered in constructing the proof as an aid in
the transformation process. In particular, suppose we have a
partial-correctness proof that employs an invariant assertion
invariant(x y) at some label L, and a well-founded ordering
termination proof that employs a well-founded set W and a
termination expression E(x y) at L. Then we can insert after
L any program segment F with the following characteristics:

1) If invariant(x y) holds, then the execution of F terminates
and invariant(x y) is still true afterwards. (Thus, the altered
program will still satisfy the original input-output assertions.)

2) If invariant(x y) holds, then the value of E(x y) in the
well-founded set is reduced or held constant by the execution
of F. (Therefore, the altered program will still terminate.)
For example, suppose that we have proved the partial cor-

rectness of a program by means of the invariant assertion

L: {x>Oandy>Oandx-y=k}

and that we have proved its termination by means of the
termination expression

E(xy) =x,

over the nonnegative integers, at L. Then we may insert the
statement

if even(x) then (x y) v- (x/2 2 - y)

after L, without destroying the correctness of the program or
its termination.
Note that the above transformation does not dictate what

segment F is to be inserted, nor does it guarantee that the
altered program will be more efficient than the original.
Furthermore, even though it preserves the correctness of the
transformed program, it may cause it to produce a different
output from the original program.
Let us now apply these techniques to transform our sub-

tractive ged algorithm (Program A) into the so-called binary
ged algorthm. We reproduce Program A below, introducing
a new invariant assertion in the middle of the loop body:

input(xo Yo)
{xo >Oandyo >Oand(xo 0oryo0 O)}
(xy) <- (xo yo )

more: {x>0andy>0and(x=0ory#O)
and gcd(x y) = gcd(xo Yo )}

ifx =0 then goto enough
{x >0 and y >0 and gcd(x y) = gcd(xo Yo)}
ifyvx thenyv-y -xelse(xy)+-(yx)
goto more

enough: {y = gcd(xo Yo)}
output(y).
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The new assertion

x >0 andy >0 and gcd(xy)= gcd(xoyo)
is equivalent to our original loop assertion at more, and is in-
cluded because we want to insert new statements at this point.
In formulating the invariant assertions for this program, we
have used the abbreviated notation gcd(x y) in place of the
expression max{u: ulx and uly}.
Recall that to prove the termination of this program by the

well-founded ordering method, we used the termination expres-
sion E(x y) = (x y) over the set of all pairs of nonnegative inte-
gers, with the lexicographic ordering.
Now, suppose that we know three additional properties of

the gcd:

a) gcd(x y) = gcd(x/2 y) if x is even and y is odd,
b) gcd(x y) = gcd(x y/2) if x is odd and y is even,
c) gcd(x y) = 2 * gcd(x/2 y12) ifx and y are both even.

Then we can use these properties and the above correctness-
preserving transformation technique to introduce three new
statements into the body of the program loop.
Property a) will allow us to divide x by 2 when x is even and

y is odd, without changing the value of gcd(x y) and, hence,
without affecting the truth of the new invariant

x >0 andy > 0 and gcd(x y) = gcd(xo yo).

and disturb the invariant. To restore the balance, let us gen-
eralize all the invariant assertions, replacing

gcd(x y) = gcd(xo Yo)

by

z * gcd(x y) = gcd(xo yo),

where z is a new program variable. We can then preserve the
truth of the invariant by multiplying z by 2 when we divide
both x and y by 2. Thus, we introduce the new statement

if even(x) and even( y) then (x y z) v- (x/2 y/2 2 z).

The altered program will still terminate, because if x and y are
even, the termination expression (x y) will then be reduced in
the lexicographic ordering.
To introduce the new variable z into the intermediate asser-

tions, we must also adjust the initial and final paths of our
program. To ensure that the generalized assertion will hold
when control first enters the loop, z must be initialized to 1.
Furthermore, when control ultimately leaves the loop with x =
0, the output returned by the program must be z y rather
than y, because then z y = z-gcd(O y) = z- gcd(x y) =
gcd(xo yo). Therefore, we introduce the assignment y - z *y
into the final path of the program.
Our transformed program is then

input(xo yo)
{xO >Oandyo >Oand(xo #Ooryo #0)}
(xy z)-(xo Yo 1)

more: {x>0andy>0and(x 0ory=0)
and z gcd(x y) = gcd(xo yo)}

ifx = 0 then goto enough
{x>Oandy>Oandz * gcd(xy)=gcd(xoyo)}
if even(x) and odd(y) then x +- x/2 ........ ....... (1)
if odd(x) and even(y) theny <-yf2 ........ ....... (2)
if even(x) and even(y) then (x y z) v- (x/2 y/2 2 * z) . . (3)
{x >O andy >O and z gcd(xy) =gcd(xo yO)}
ify >x thenyy y - x else (xy) v (y x)
goto more

enough:y*-z.y
{y =gcd(xo yo)}
output(y).

Furthermore, the value of the termination expression (x y)
is reduced in the lexicographic ordering if x is divided by 2.
Similarly, Property b) will allow us to do the same for y if y
is even and x is odd. Consequently, we can apply the correct-
ness-preserving transformation to introduce the two new
statements

if even(x) and odd(y) then x v- x/2
if odd(x) and even(y) theny <-y/2

after the new invariant.
Property c), on the other hand, cannot be applied so readily,

because dividing both x and y by 2 will divide gcd(x y) by 2

(The enumeration on the right has been added for future ref-
erence.) The correctness-preserving transformation does not
ensure that this program will run faster than the original pro-
gram, but only that is satisfies the same input-output asser-
tions and that it still terminates.
To improve our program further, we introduce another

correctness-preserving transformation. If x is even and y is
odd, the assignment statement x v- x/2 preserves the truth of
the invariant assertion

x >0 and y >0 and gcd(x y) = gcd(xo yo)

and, so long as x > 0, reduces the value of the termination ex-
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pression (x y). Therefore, if we replace the conditional state- inl
ment

if even(x) and odd(y) then x - x/2 (1) an

by the whfle statement

while even(x) and odd(y) and x > 0 do x *- x/2, (1')

we have maintained the correctness and termination of the
program. The assignment statement will then be applied
repeatedly until x is odd.
Similarly, if x is odd, y is even, and y > 0, the assignment

y -- y/2 will preserve the invariant assertion and reduce the
termination expression; therefore, the conditional statement

if odd(x) and even(y) theny <-y/2 (2)

if odd(x) andy >0 then while even(y) doy --y/2 (2")

Id the statement

while even(x) and even(y) and (x >0 ory >0)
do (xy z) v (x/2 y/2 2 - z)

into

if (x >0 or y >0) then while even(x) and even( y)
do (xy z) v (x/2 y/2 2 - z).

(3')

(3")
Because all of these statements preserve the truth of the in-
variant x > 0, the test x > 0 can be dropped from statement
(1 "), and the test (x >0 or y >0) can be dropped from state-
ment (3").
The resulting program is then

Program D (the binary algorithm)
input(xo Yo)
(xyz)+-(xoyo 1)

more: ifx = 0 then goto enough
if odd(y) then while even(x)Ido x v x/2
if odd(x) andy >0 then while even(y) doy s-y/2
while even(x) and even(y) do (xy z) v- (x/2 y/2 2 z)
ify >x theny <y - x else (xy)<- (y x)
goto more

enough: y4-z-y
output(y).

can be replaced by the while statement

while odd(x) and even(y) andy >0
doy +-y/2. (2')

In the same way, the conditional statement

if even(x) and even(y) then (x y z) v- (x/2 y/2 2 z) (3)

can be replaced by the while statement

while even(x) and even( y) and (x >0 or y >0)
do(xyz)-(x/2 y/2 2 z). (3')

The condition "x > 0 ory > 0" guarantees that the assignment
(x y z) v- (x12 y/2 2 - z) reduces the value of the expression
(x y) in the lexicographic ordering.
In the while statement

while even(x) and odd( y) and x >0 do x v x/2 (1W)
the truth of the test "odd(y) and x > 0" cannot be affected
by the assignment statement x -o- x/2; therefore, using an

equivalence-preserving transformation, we can replace the
while statement by

if odd( y) and x >0 then while even(x) do x -v- x/2. (1i")

The same transformation can be used to transform

while odd(x) and even(y) andy >0 doy <y/2 (2')

Further transformations are still possible. The while statement
can be removed from the loop, for example, because once one
of the program variables is odd, they will never both be even.
Although the transformations we applied are not all guaran-

teed to produce optimizations, the final algorithm turns out to
be significantly faster than the given subtractive algorithm if
implemented on a binary machine, where division and multi-
plication by 2 can be performed quite quickly by shifting
words to the right or left.

The binary gcd algorithm is based on one discovered
by Silver and Terzian (see Knuth [51, pp. 293-338]).
An analysis of the running time of this algorithm has
been performed by Knuth and refined by Brent [ 11 ].
The correctness-preserving transformations we used to

produce the binary gcd algorithm are in the spirit of
Gerhart [34] and Dijkstra [28].

We have presented program transformations as a means of
improving the efficiency of a given program. In fact, the
existence of such transformations may aid in ensuring the
correctness of programs as well. A programmer can safely
ignore efficiency considerations for a while, and produce the
simplest and clearest program possible for a given task; the
program so produced is more likely to be correct, and can be
transformed to a more efficient, if less readable, program at a
later stage.

221



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

Program transformation as a method for achieving
more reliable programming has been advocated by Knuth
[52] and Burstall and Darlington [15]. The latter
authors implemented an interactive system for the
transformation of recursive programs. Wegbreit [851
illustrates how a transformation system can be guided
by an analysis of the efficiency of the program being
transformed, thus ensuring that the program is improved
and not merely transformed.
One area for which the application of program trans-

formations has been particularly well explored is the
representation of data structures: programs written in
terms of abstract data structures, such as sets or graphs,
are transformed to employ more concrete representa-
tions, such as arrays or bit strings, instead. By delaying
the choice of representation for the abstract data struc-
ture until after the program is written, one can analyze
the program to ensure that an efficient representation is
chosen. This process is examined, for example, in Earley
[30] and Hoare [431. Experimental implementations
have been constructed by Low [ 5 5 ], Schwartz [ 71 ], and
Guttag et al. [40].

VIII. PROGRAM DEVELOPMENT
In the previous section we discussed logical techniques for

transforming one program into another that satisfies the same
specifications. In this section we will go one step further and
introduce techniques for developing a program from the
specifications themselves. These techniques involve generaliz-
ing the notion of transformation to apply to specifications as
well as to programs. The programs produced in this way will
be guaranteed to satisfy the given specifications, and thus will
require no separate verification phase.
To illustrate this process we will present the systematic

development of a recursive and an iterative program to com-
pute the gcd function. From each derivation we will extract
some of the principles frequently used in program develop-
ment. We will then show how these principles can be applied
to extend a given program to achieve an additional task. In
particular, we will extend one of our gcd programs to compute
the "least common multiple" (Icm) of two integers as well as
their gcd.
Let us first develop a recursive program for computing the

gcd. We require that the desired program gcdgoal(x y) satisfy
the output specification

gcdgoal(x y) = max {u: ulx and uly},

where x andy are integers satisfying the input specification

x >0 andy >0 and (x = 0 ory #0).

The set constructor { u: . . .} is admitted to our specification
language but is not a primitive of our programming language.
We must find a sequence of transformations to produce an
equivalent description of the output that does not use the set
constructor or any other nonprimitive construct. This de-
scription will be the desired primitive program. In what
follows we will exhibit a successful sequence of transforma-
tions, without indicating how the next transformation at a

The transformations we employ for this example embody no

knowledge of the gcd function itself, but some sophisticated
knowledge about functions simpler than the gcd, such as the
following:
For any integers u, v, and w,

a) ulv==> true if v=0
(any integer divides zero),

b) ulv and ulw ==> ulv and uIw - v

(the common divisors of v and w are the same as those
of v and w - v),

c) max{u:ujv}== v ifv>o
(any positive integer is its own greatest divisor).

In applying these transformations, we will produce a sequence

of goals; the first will be derived directly from the output
specification, and the last will be the desired program itself.
Our initial goal is

Goal 1. Compute max {u: ulx and u I y},

for any x and y satisfying the input specification. Trans-
formation b) above,

ulvandulw==ulvandulw v

applies directly to a subexpression of Goal 1, yielding

Goal2. Computemax{u:ulxanduly-x}.

Note that Goal 2 is an instance of our output specification,
Goal 1, but with x and y - x in place of the arguments x and y.
This suggests achieving Goal 2 with a recursive call to
gcdgoal(x y - x), because the gcdgoal program is intended to
satisfy its output specification for any arguments satisfying its
input specification.
To see that the input specification is indeed satisfied for the

arguments x and y - x of the proposed recursive call, we

establish a subgoal to prove the input condition

Goal3. Provex>Oandy-x>Oand(x#Oory-xO0).

This input condition is formed from the original input specifi-
cation by substituting the arguments x andy - x for the given
argumentsx andy.
Furthermore, we must ensure that the proposed recursive

call will terminate. For this purpose, we will use the well-
founded ordering method of Section IV; we establish a subgoal
to achieve the following termination condition

Goal 4. Find a well-founded set W with ordering > such
that

(xy)e Wand(x y-x)e W
and (xy) .- (x y - x).

Let us consider the input condition (Goal 3) first. Because x
has been assumed nonnegative by our original input specifica-
tion, Goal 3 can be reduced to the two subgoals,

Goal 5. Prove y > x,

and

given stage is selected.
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We cannot prove or disprove Goal 5-it will be true for some
inputs and false for others-so we will consider separately the
case for which this condition is false, i.e., y < x. This case
analysis will yield a conditional expression, testing ify <x, in
the final program.
Case y < x: We cannot achieve Goal 5 in this case. In fact,

the proposed recursive call does not satisfy its input condition;
therefore, we try to find some other way of achieving one of
our higher goals.
Using the logical identity

PandQ=> QandP,

we see that Goal 1 is an instance of itself, with x replaced by y
and y by x. This suggests achieving Goal 1 with the recursive
call gcdgoal( y x). For this purpose we must establish the input
condition

Goal 7. y>Oandx>0and(y0orx 0)

and the termination condition

Goal 8. Find a well-founded set W with ordering ~> such
that

(xy)e Wand(yx)E W
and (xy) (yx).

Goal 7 is achieved at once; it is a simple reordering of our
original input specification. We can achieve Goal 8 by taking
W to be the set of pairs of nonnegative integers, because x and
y are known to be nonnegative by our input specification. In
this case y < x, so we take our well-founded ordering > to be
the usual > ordering applied to the first components of the
pairs. (In other words, (u1 u2) > (Vl v2) if ul > vI.) Having
established the input condition and the termination condition,
we are justified in returning the recursive call gcdgoal(y x).
Thus, the partial program completed at this stage is

gcdgoal(x y) - ify <x
then gcdgoal( y x)
else ....

It remains to consider the alternate branch of the case analysis,
in whichy > x. This case corresponds to the else branch of the
final program.
Case y > x: Here, we have established Goal 5, a subgoal

of the input condition for the proposed recursive call
gcdgoal(x y - x). It remains to prove the other subgoal of the
input condition, Goal 6, that x # 0 or y # x. Again, we can-
not prove or disprove either disjunct of this goal because they
each will be true for some inputs and false for others. Thus,
we can make either x # 0 or y t x a basis for a case analysis;
we choose the former disjunct and consider the case in which
x=0is false.
Case x = 0: We cannot achieve Goal 6 here, so we are pre-

vented from introducing the recursive call gcdgoal(x y - x).
We therefore again attempt to apply alternate transformations
to the higher level goals. Because in this case x = 0, Trans-
formation a),

ulv==> true ifv=O

applies to the subexpression ulx of Goal 1, yielding

Goal 9. Compute max {u: true and u I y}.
Applying the logical transformation

true and P ==> P

produces

Goal 10. Compute max {u: ul y}.

Because y > 0 and (x 1 0 or y # 0), by our original input
specification, and x # 0, by our case condition, we know that
y > 0 at this point; therefore, we can apply Transformation c)

max{u:uIV}==>V ifv>O

yielding

Goal 11. Compute y.

We have thus reduced the goal in this case to the task of com-
puting y, which involves no nonprimitive constructs. The
desired program may simply output y. The partial program we
have constructed so far is

gcdgoal(x y) - ify <x
then gcdgoal(y x)
else ifx = 0

theny
else ....

Finally, we consider the remaining branch in our case analysis.
Case x # 0: Here, the input condition (Goal 3) for our pro.

posed recursive call gcdgoal(x y - x) is satisfied; it remains,
therefore, to consider the termination condition (Goal 4):
Find a well-founded set W with ordering > such that

(x y)eW and (x y-x)eW
and(x y) (x y-x).

For the previous recursive call, gcdgoal(y x), we have taken W
to be the set of pairs of nonnegative integers, and > to be the
usual > relation on the first components of the pairs. To en-
sure the termination of the final program, it is necessary
that W and . be the same for both recursive calls. Unfor-
tunately, the first argument of the proposed recursive call
gcdgoal(x y - x) is x itself, and it is not so that (x y) ,> (x y - x)
in the ordering > we have employed. We therefore attempt to
alter >' to establish the termination conditions of both recur-
sive calls gcdgoal(y x) and gcdgoal(x y - x).
Because in this case it is known that x > 0 (i.e., x # 0 and

x > 0), we have that y >y - x. We therefore extend the order-
ing to examine the second components if it happens that the
first components are equal; in other words, we revise > to be
the lexicographic ordering on the pairs of nonnegative integers.
With the new ordering > , both recursive calls can be shown to
terminate. We have thereby established Goal 4, and the pro-
gram can output gcdgoal(x y - x) in this case.
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Our final program is

gcdgoal(x y) < ify <x
then gcdgoal( y x)
else ifx = 0

then y
else gcdgoal(x y - x).

This program is similar to our subtractive gcd algorithm (Pro-
gram A), but its tests are performed in the reverse order.
Note that in performing the above derivation, we have en-

sured that the derived program terminates and satisfies the
given specifications; thus, we have proved the total correctness
of the program in the course of its construction.
From the above example, we may extract some of the basic

principles that are frequently used in program development.
1) Transformation Rules: The program is developed by

applying successive transformation rules to the given specifica-
tions. The rules preserve the meaning of the specifications,
but try to replace the nonprimitive contructs of the specifica-
tion language by primitive constructs of the programming
language.

2) Conditional Introduction: Some transformation rules
require that certain conditions be true before the rules can be
applied. When a transformation requires a condition that we
cannot prove or disprove, we introduce a case analysis based
on that condition, yielding a conditional expression in the
ultimate program.
3) Recursion Introduction: When a subgoal is an instance

of the top goal (or any higher level subgoal), a recursive call
can be introduced, provided that the input specification of
the desired program is satisfied by the new arguments, and the
termination of the recursion can be guaranteed.
The above example illustrated the construction of a recursive

program from given specifications. If we wish to construct an
iterative program instead, alternate techniques are necessary.
In our next example we will illustrate some of these tech-
niques.
In constructing the recursive program we did not allow our-

selves to use any of the properties we know about the gcd
function itself, but only the properties of subsidiary functions
such as division and subtraction. In constructing the iterative
program, however, we facilitate the process by admitting the
use of several properties of the gcd function itself:
For any integers u and v

a)gcd(uv)=v ifu=0andv>0
b) gcd(u v) = gcd(rem(v u) u) if u > 0 and v> 0,

where rem(v u) is the remainder of dividing v by u. We further
simplify the task by assuming the stronger input assertion

xo >O andyo >0.

We write our goal directly in terms of the gcd function

Goal 1. input(x0 Yo)
{xo>Oandyo >01
achieve z = gcd(xo Yo)
{z =gcd(xo Yo)}
output(z).

Here, to achieve a relation means to construct a program seg-
ment assigning values to the program variables so that the
relation holds. Note that we have annotated the goal with the
program's input and output assertions.

It is understood that "gcd" is part of the assertion language
but not a primitive construct of our programming language, so
it does not suffice merely to set z to be gcd(xo yo); we are
forced to rephrase our goal in terms of the primitive con-
structs.
Because xo and yo are input values, which we will want to

refer to later, we introduce new program variables x and y
whose values can be manipulated. Consequently, the above
goal is replaced by the equivalent subgoal

Goal 2. input(xo yo)
{xo >Oandyo >0}
achieve z = gcd(x y) and gcd(x y) =gcd(xo yo)
{z =gcd(xo YO)}
output(z).

Using Property a), that

gcd(uv)=v ifu=Oandv>O,

we can reduce Goal 2 to the following goal,

Goal 3. input(xo Yo)
{xo >Oandyo >01
achieve z = y and gcd(x y) = gcd(xo Yo)

and x = 0 andy > 0
{z =gcd(xo Yo)}
output(z).

We can now achieve z = y by setting z to be y before exiting
from the program. We choose to achieve the remaining con-
junction by introducing a loop whose exit test is x = 0, and
whose invariant assertion is gcd(x y) = gcd(xo yo) andy > 0.
(To be certain that gcd(x y) is defined, we must add the in-
variant x > 0, as well.) On exiting from such a loop, we can
be sure that all the conjuncts are satisfied. The desired program
will be of the form

Goal 4. input(xo Yo)
{xO>Oandyo>0}
achieve gcd(x y) = gcd(xo yo) and x >0 and y >0

more: { gcd(x y) = gcd(xo yo) and x > 0 andy > 01
ifx = 0 then goto enough
achieve gcd(x y) = gcd(xo yo) and x >0 andy >0

while guaranteeing termination
goto more

enough: z <- y
{z = gcd(xo Yo)}
output(z).

The variables x and y can be initialized to satisfy the in-
variant assertion easily enough by setting x to xo and y to
yo. In constructing the loop body, we must ensure not only
that the invariant is maintained, but also that the values of
the program variables x and y are altered so that the program
will ultimately terminate, i.e., so that eventually x = 0. For
this purpose, we require that x be strictly reduced with each
iteration.
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To reduce x while maintaining the invariant assertion, we use
the above Property b) of the gcd function, that

gcd(u v) = gcd(rem(v u) u) if u> 0 and v> 0,

and an additional property of the remainder function, that

0 6 rem(v u) < u if u > 0 and v > 0.

Because we know that x and y are positive (by the exit test
and the invariant assertion), we can achieve the requirements
for the loop body by updating x and y to be rem(y x) and x,
respectively. The fmal program, complete with its annotations,
is

input(xo Yo)
{xo >Oandy0 >01
(xY) v- (xo Yo)

more: {gcd(xy) =gcd(xo yo) andx > 0 andy > 0}
ifx = 0 then goto enough
(x y) <- (rem(y x) x)
goto more

enough: z *-y
{z =gcd(xo Yo)}
output(z).

This is an iterative version of the Euclidean gcd algorithm
(Program C).
The above example allows us to extract some additional

principles of program development:
Variable Introduction: Introduce program variables that

can be manipulated in place of input values, and rewrite the
goal in terms of the program variables.
Iteration Introduction: If a goal is expressed as a con-

junction of several conditions, attempt to introduce an iterative
loop whose exit test is one of the conditions and whose in-
variant assertion is the conjunction of the others.
There are many other program development techniques

besides those encountered in the two examples above. Some
of these are listed here:

1) Generalization: We have observed earlier that in proving
a theorem by mathematical induction, it is sometimes nec-
essary to strengthen the theorem, so that a stronger induction
hypothesis can be used in the proof. By the same token, in
deriving a recursive program it is sometimes necessary to gen-
eralize the program's specifications, so that a recursive call to
the program will satisfy a desired subgoal. Thus, in construct-
ing a program to sort an array with elements AO, A1, ,An
we may be led to construct a more general program to sort an
arbitrary segment Ai, Ai.,, * * *, Ai. Similarly, in constructing
an iterative program we may need to generalize a proposed
invariant assertion, much as we were forced to generalize the
invariant assertion gcd(x y) = gcd(xo yo) to be z * gcd(x y) =
gcd(xo yo) in developing the binary gcd algorithm (Program
D) in Section VII.
2) Simultaneous Goals: Often we need to construct a pro-

gram whose specifications involve achieving a conjunction of
two or more interdependent conditions at the same time. The
difficulty is that in the course of achieving the second condi-
tion we may undo the effects of achieving the first, and so on.

One approach to this problem is to construct a program to
achieve the first condition, and then extend that program to
achieve the second condition as well; in modifying the pro-
gram we must protect the first condition so that it will still be
achieved by the altered program. For instance, a program to
sort the values of three variables x, y, and z must permute
their values to achieve the output specification "x 6 y and
y S z." To construct such a program, we may first construct
a program to achieve x < y and then extend that program to
achieve y S z as well, while protecting x < y.
3) Efficiency: To ensure that the program we construct will

be efficient, we must be able to decide between alternate
means of achieving a given subgoal. We must consider the
effects of the chosen transformations on the time and space
requirements of the ultimate program. For example, in con-
structing a gcd program, if we were given a variety of trans-
formations based on different properties of the gcd function,
we might need to decide between achieving the subgoal
"compute max {u: uI x and uly - x}" and the subgoal "com-
pute max {u: u I x and u I (y/2)}."

The synthesis of the iterative Euclidean algorithm above
follows Dershowitz and Manna [24]. A discussion of
generalization in program synthesis is found in Siklossy
[731. An approach to the simultaneous goal problem
appears in Waldinger [821 .
The systematic development of programs has been re-

garded from two points of view: as a discipline to be
adhered to by human programmers in order to construct
correct and transparent programs, and as a method by
which programs can be generated automatically by com-
puter systems. The first aspect, referred to as structured
programming (see, for example, Dahl et al. [191, Wirth
[86 ], and Dijkstra [ 28 ] ), has been advocated as a practi-
cal method for achieving reliability in large computer
programs. The second aspect of program development,
called program synthesis, is currently being pursued as a
research activity (e.g., see Buchanan and Luckham [ 1 2 ],
Manna and Waldinger [60] , and Darlington [201 ).
Although the techniques of structured programming

are sufficiently well-specified to serve as a guide to the
human programmer, much needs to be done before hu-
man performance can be imitated by an automatic system.
For instance, at each point in the development of a pro-
gram, a synthesis system must decide what portion of
the specifications will be the next to be transformed and
select an appropriate transformation from many plausible
candidates. In introducing a loop or recursive call it
may need to find a suitable generalization of the goal or
the proposed invariant assertion. Furthermore, a synthe-
sis system must have access to knowledge of the proper-
ties of the operations involved in the program being
constructed and be able to use this knowledge to reason
about the program. To some extent these problems are
shared by verification systems, but the synthesis task is
more difficult than verification, because it receives less
help from the human programmer and demands more
from the computer system. Consequently, automatic
program synthesis is still in an experimental stage of
development, and does not seem likely to be applied to
practical programming problems in the near future.
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In the examples of program development we have seen so

far, we have used the given specification as a basis for con-

structing a completely new program. We have introduced no

mechanisms for taking advantage of work we may have done
previously in solving some related problem. This situation
conflicts sharply with ordinary programming practice, where
we are often altering or extending old programs to suit new
purposes. In our next example we will assume that we are

given a program with its original specifications plus some

additional specifications; we will extend the program to
satisfy the new specifications as well as the original ones.

Thus, although we may add new statements or change old
ones in the existing program to achieve the new goal, we will
always be careful that the program still achieves the purpose
for which it was originally intended.
We suppose we are given a program to compute the ged of

two positive integers, and we want to extend it to compute
their least common multiple as well. The least common mul-
tiple ofx and y, or lcm(x y), is defined to be the smallest posi-
tive integer that is a multiple of both x and y; for example,
Icm(12 18) = 36. Now, of course we could construct a com-

pletely separate program to compute lcm(x y), but in fact the
gcd and the Icm are closely related by the identity

a) gcd(xy) - lcm(xy) x y.

(For example, gcd(12 18) * lcm(12 18) = 6 36 = 216 = 12
18.) We would like to take advantage of the work being done
in the gcd program by adding new statements that will enable
it to compute the Icm at the same time.
Suppose the given gcd program, annotated with its assertions,

is as follows:

input(xo yo)
{xo >Oandyo >0}

(xy) (xo yo)
more: {gcd(xy) =gcd(x0 y0) andx > 0 andy > 0}

ifx = 0 then goto enough
ify >x theny <y - x elsex <x - y
goto more

enough: {y = gcd(xo yo)}
output(y).

This is a version of our subtractive algorithm (Program A) for
computing the gcd of positive integers only.
The extension task is to achieve the additional output

assertion

x lcm(xo Yo)

as well as the original output assertion

y =gcd(xo y0).

In the light of the identity (a) relating the gcd and the 1cm,
the most straightforward way to achieve this new assertion is
to assign

x'*-(xo -Yo)/Y

at the end of Program A. However, Program A itself com-

putes the gcd without using multiplication or division; let us

see if we can extend the program to compute the Icm using
only addition and subtraction.
One approach to program extension reflects a technique we

already used in developing a new program: we try to find an
additional intermediate assertion for the program, usually in-
volving new variables, that will imply the new output assertion
when the program halts. We then alter the program by initializ-
ing the new variables so that the additional intermediate asser-
tion will be satisfled the first time we enter the loop, and by
updating these variables in the loop body so that the assertion
will be maintained as an invariant every time we travel around
the loop. As in proving the correctness of a program, the
choice of suitable intermediate assertion may require some
ingenuity.
For instance, it would suffice if we could extend the program

by introducing the relation

x *y=x 0y0
as a new intermediate assertion in addition to our original
assertion

gcd(x y) = gcd(xo yo) and x >0 and y > 0.

This relation implies the new output assertion, because when
the program halts, y will be gcd(xo yo), and therefore x' will
be lcm(xo Yo). If we initialize x' to be xo, this relation will be
satisfied the first time we enter the loop, because y is initialized
to yo. However, we still need to update the value of x' as we
travel around the loop so that the relation is maintained; this
turns out to be a very difficult task.
A successful new intermediate assertion is the much less

obvious choice

b) x'-y +x y'=xo0yo
where x' and y' are both new variables. This relation does
imply the output assertion, because x = 0 andy = gcd(xo yo)
when the program halts. Furthermore, because y is initialized
to yo, we can ensure that the relation will be true the flrst time
we enter the loop by initially assigning

(x'y')*-(xo 0).
Finally, we can maintain the relation when control passes

around the loop: Considering the case in which y > x, let us
rewrite Relation b) as

x *((y-x)+x)+x y'=x0.y0.
After y is reset to y - x, a new relation holds:

x -(y+x)+xy' = xo yo,
i.e.,
x y+x (y'+x')=xo yo.

Hence, to restore our intended invariant assertion, it is only
necessary to assign

Y y + X

in this branch of the loop body.
In considering the other branch, for which y < x, we merely
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reverse the roles of x and y, and of x' and y'; thus, we can
restore our intended invariant by assigning

x v-x +y

in this case.
It is clear that the changes we have introduced do not affect

the truth of the program's original assertions, because we have
only altered the values of the new variables x' and y', which
do not appear in those assertions. The complete program,
which computes both the ged and the Icm at the same time, is

Program E (the extended algorithm):
input(xo Yo)
{xo >O andyo >0}
(x y x'y') v (xoyo xo 0)

more: {gcd(xy)=gcd(xoyo)andx > Oandy>O
and x' y+x y'=xo -Yo}

ifx = 0 then goto enough
ify>x then (y y') v (y - x y' + x')

else (x x')--(x-y x'+y')
goto more

enough: {y=gcd(x0yo)andx'= km(xoyo)}
output(y x').

This program computes the kcm as a byproduct of computing
the gcd, using only the addition operation. Given the inter-
mediate assertion b), it is purely mechanical to extend Pro-
gram A to Program E. Choosing a successful intermediate
assertion, however, is still a mysterious process.
In the above example, we were careful that the program

being extended still achieved its original purpose, computing
the gcd of its arguments. It sometimes happens that we need
to adapt a program to perform a new but analogous task. For
example, a program that computes the square root of a number
by the method of "successive approximations" might be
adapted to compute the quotient of two numbers by the same
method. In adapting a program we want to maintain as much
as possible of its original structure, but we change as much as
necessary of its details to ensure that the altered program will
satisfy the new specifications. If we have proved the correct-
ness of the original program, it is possible that we may also be
able to adapt the proof in the same way to show the correct-
ness of the new program. Program debugging may be con-
sidered as a special case of adaptation, in which we alter an
incorrect program to conform with its intended specifications.

Program adaptation has been studied by Ulrich and
Moll [80], and an experimental program adaptation
system has been produced by Dershowitz and Manna
[25]. Automatic debugging has been discussed by
von Henke and Luckham [811 and by Katz and Manna
[47].
In this section, we have discussed logical techniques

for program development from given input-output
specifications. Other approaches to the construction of
programs, under the general rubric of automatic pro-
gramming, have used more informal methods of program
specification and less systematic techniques for program
development; a survey of the entire field of automatic
programming is provided by Biermann [6]. Alternate

approaches to automatic programming include the
following:

1 ) Giving typical pairs of inputs and outputs; e.g.,
(A (B C) D) ==> (D (B C) A) suggests a program to re-
verse a list. A system that accepts such specifications
must be able to generalize from examples (e.g., see
Hardy [411 and Summers [771). Sample input-
output pairs are natural and easy to formulate, but
they may yield ambiguities, even if several pairs are
given.

2) Giving typical traces of the execution of the
algorithm to be encoded; e.g., the trace (12 18)
(6 12) - (0 6) 6 suggests that the Eucidean gcd
algorithm is to be constructed (see Biermann and
Krishnaswamy [ 7] ). To formulate such a specifica-
tion, we must have a particular algorithm in mind.

3) Engaging in a natural-language dialogue with the
system. For instance, in specifying an operating sys-
tem or airline reservation system, we are unlikely to
formulate a complete and correct description all at
once. In the course of an extended dialogue, we may
resolve inconsistencies and clarify details (see Balzer
[ 5 ], Green [ 3 8] ). The use of natural language avoids
the necessity to communicate through an artificial
formalism, but requires the existence of a system
capable of understanding such dialogue.
4) Constructing a program that "almost" achieves

the specifications, but is not completely correct, and
then debugging it (see Sussman [78]). This tech-
nique is similar to the way human programmers pro-
ceed and is particularly appropriate in conjunction
with the natural-dialogue approach, in which the specifi-
cations themselves are likely to be incorrect at first.
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